报告了基于两个带有多层反射涂层的平面镜的X射线单色器的“ SKIF”同步器的项目。单色仪的概念是基于真空中缺乏精确的机械系统和进料的概念,从而大大降低了镜面污染并提高了扫描精度。此外,该设备的整体结构以这种方式大大简化了,这又导致制造总成本和人工大幅降低。在光子能量扫描过程中,镜子上辐射的放牧角在0之内有所不同。5 - 1。3◦。镜子的长度为120 mm,所假定的输入梁的大小为1×1 mm 2。通过使用3个带有不同化学成分的涂层的涂层,即MO/B4C,W/B4C和CR/BE,可以实现宽的工作能量范围8-36 KEV。本文介绍了X射线光学方案,单色器的预期反射系数和光谱选择性,热诱导的表面变形的计算结果以及第一镜的相应斜率误差。
尽管软 X 射线区域与新兴能源转换技术息息相关,但由于 X 射线光学基础问题,该区域很少得到利用。相比之下,软 X 射线和硬 X 射线区域则广泛应用于基于光栅[1,2]或晶体[3]单色仪的同步辐射装置,以便为光谱学或显微镜学提供高光子通量和高能量分辨率的光子束。[4–6] 传统的单层涂层平面光栅单色仪(PGM)在软 X 射线范围内效率相对较低,并且由于入射光子束的掠射角非常小,杂散光不可忽略。基于晶体的单色仪在几乎垂直入射条件下的软 X 射线区域工作,这会导致热负荷和热不稳定性。
使用 Chromex 500 SM、单通单色仪、连续光源和发射线源校准干涉滤光片。校准程序如下:将 LP2 聚焦到单色仪的出口狭缝上,出口狭缝通常设置为 150 mm 的宽度。使用辅助 Ie 将连续光源(通常是钨肋灯)聚焦到入口狭缝(宽度为 150 mm)上。通过遮蔽单色仪和 LP2 之间的光路来排除外部光。此外,在测量期间关闭室内灯。然后在计算机控制下以 -0.3 nm 的步长扫描单色仪,通过滤光片的透射峰,并在每个波长下测量 LP2 输出。定期停止扫描以引入 Ie 光源,从而为单色仪提供校准。扫描完成后,进行第二次扫描(沿同一方向),但不放置干涉滤光片(滤光片安装在具有多个空隙的轮子上)。使用线源测量对单色仪波长进行校正。第一次扫描与第二次扫描的比率给出了干涉滤光片的透射曲线,消除了检测器响应、单色仪吞吐量随波长的变化、LP2 透镜透射和辐射源的发射率效应。除了这些测量外,还以较长和较短的步进方式进行更宽的扫描
单色仪是一种高品质的干涉滤光片,放置在视野中时,可产生彩色光应力图案的单色光图像。单色光在光应力测试中有两个主要应用:(1) 观察高应力梯度区域中的应力带(在白光下,彩色图案在极高应力水平下会变暗),以及 (2) 光应力图案的黑白摄影。单色仪可以手持,也可以安装在特殊外壳中,以便连接到摄像机镜头。
尽管软 X 射线区域与新兴能源转换技术息息相关,但由于 X 射线光学基础问题,该区域很少得到利用。相比之下,软 X 射线和硬 X 射线区域则广泛应用于基于光栅[1,2]或晶体[3]单色仪的同步辐射装置,以便为光谱学或显微镜学提供高光子通量和高能量分辨率的光子束。[4–6] 传统的单层涂层平面光栅单色仪(PGM)在软 X 射线范围内效率相对较低,并且由于入射光子束的掠射角非常小,杂散光不可忽略。基于晶体的单色仪在几乎垂直入射条件下的软 X 射线区域工作,这会导致热负荷和热不稳定性。
下一代高亮度 X 射线光子源需要新的 X 射线光学器件。我们在此展示了在尖端高重复率 X 射线自由电子激光 (XFEL) 设备中使用单片金刚石通道切割晶体作为高热负荷光束复用窄带机械稳定 X 射线单色仪的可能性,该单色仪具有高功率 X 射线光束。这些研究中制造和表征的金刚石通道切割晶体设计为双反射布拉格反射单色仪,分别将 15 meV 带宽内的 14.4 或 12.4 keV X 射线引导至 57 Fe 或 45 Sc 核共振散射实验。晶体设计允许带外 X 射线以最小的损失传输到其他同时进行的实验中。入射的 100 W X 射线束中只有不到 2% 被 50 m 厚的第一块金刚石晶体反射器吸收,从而确保单色器晶体高度稳定。预计金刚石槽切割晶体将用于其他 X 射线光学应用。
SPEQTEM(光谱量子透射电子显微镜)是一种先进的显微镜,配备单色仪、能量过滤器和电子束整形及量子控制附件。除了能够对材料进行原子分辨率成像外,它还有助于研究相干激发和内部电磁场。该显微镜由 IE entrance、NQSTI、Smart Electron 和 Impress 项目资助购置。它的目标是成为光谱和量子显微镜的领先中心。
该弯曲磁体光束线自 1995 年 2 月开始运行,用于表征光学元件(镜子、光栅、多层、探测器等)能量范围为 50-1000 eV。虽然它主要用于 EUV 投影光刻的多层反射光学元件的精密反射测量,但它具有广泛的测量能力。光学元件由单色仪、反射计和重新聚焦镜组成,以在样品上提供一个小点。单色仪是一种非常紧凑、无入口狭缝、变线距平面光栅设计,其中机械刻划光栅在高放大倍数工作的球面镜的会聚光中运行。镜子的像差通过线间距变化进行校正,因此光谱分辨力 λ / ∆λ 受 ALS 光源尺寸限制,约为 7000。波长通过简单旋转具有固定出口狭缝的光栅进行扫描。反射计能够将样品定位在 10 µ m 以内,并将其角位置设置为 0.002 °。基于 LABVIEW™ 的软件为用户提供了方便的界面。反射计通过差动泵与光束线分开,可在半小时内抽空。辅助实验站可以安装在反射计后面。结果证明了光束线的性能和操作便利性。© 1996 美国物理学会。
可调光源的范围可以从传统的扫描单色仪到光学参量振荡器可调激光器 (OPO)。OPO 激光器提供明亮的可调相干光源,但脉冲能量稳定性目前根据光谱区域不同,范围从百分之几到 40%。为了克服 OPO 激光器强度稳定性差的问题,可以采用双同步检测系统 (DSDS):它由两个光纤耦合光电二极管和两个开关积分放大器 (SIA) [1] 组成,它们共享相同的定时信号进行光电流积分。由于两个 SIA 共享相同的定时电路,DSDS 能够同时积分两个光电二极管 1 和 2 的光电流,从而将激光不稳定性的影响降低了大约三个数量级。事实上,可以测量两个光电流的比率(在最佳信噪比条件下),相对统计方差低于 0.05%。在积分期间连续获取 SIA 输出电压,然后计算其斜率。