图 1-1. IE 综合评审分类法 ............................................................................................................................................. - 5 - 图 3-1. 飞机排放、影响和损害之间的关系 ............................................................................................................. - 20 - 图 3-2. 机场对 2008/9 年期间平均 NO x 浓度的贡献 ............................................................................................. - 22 - 图 3-3. 2013 年大伦敦地区年平均 NO 2 浓度 ............................................................................................. - 24 - 图 3-4. 靠近出口喷嘴处测得的颗粒大小分布 ............................................................................................. - 24 - 图 3-5. 从工业化前时期到 2009 年全球航空的 IPCC RF 成分 ............................................................. - 30 - 图 3-6:全球总体水平的航空环境影响比较 ............................................................................................. - 34 - 图 4-1.单通道和双通道飞机在估计 ML/D 方面的改进 ............................................................................................. - 36 - 图 4-2. 从燃料中的能量到有用推进功率的两步转换过程 ............................................................................. - 39 - 图 5-1. 燃烧策略:左侧为浓燃烧 (RQL),右侧为稀薄燃烧 (LDI) ............................................................. - 47 - 图 5-2. 当前稀薄燃烧的比较(左
型号 STERRAD ® NX ® 系统是一种先进的过氧化氢气体等离子系统,可实现快速终端灭菌,标准循环时间为 28 分钟,高级循环时间为 38 分钟。*该系统可对各种器械进行灭菌,包括单通道柔性内窥镜、半硬性输尿管镜、电钻、电池、照相机、灯线、硬性内窥镜、一般手术器械等。该系统可灵活地在需要时准备好干燥、包装好的无菌器械。STERRAD ® NX ® 系统提供多种独特功能,包括网络连接、诊断程序和易于阅读的触摸屏。其紧凑的尺寸和简单的插件使其非常适合放置在各种位置,例如手术室亚无菌室、手术室外科核心、门诊手术中心、无菌处理部门和专科部门(例如泌尿科)。只有 STERRAD ® NX ® 系统可以提供所有这些功能,使医疗机构能够处理更多的病例,而不会出现延误,从而确保手术室按时进行。
� 高性能浮点数字信号处理器 (DSP) – TMS320C30-50 (5 V) 40 纳秒指令周期时间 275 MOPS、50 MFLOPS、25 MIPS – TMS320C30-40 (5 V) 50 纳秒指令周期时间 220 MOPS、40 MFLOPS、20 MIPS – TMS320C30-33 (5 V) 60 纳秒指令周期时间 183.3 MOPS、33.3 MFLOPS、16.7 MIPS – TMS320C30-27 (5 V) 74 纳秒指令周期时间 148.5 MOPS、27 MFLOPS、13.5 MIPS � 32 位高性能 CPU � 16/32 位整数和 32/40 位浮点运算 � 32 位指令字,24 位地址 � 两个 1K × 32 位单周期双访问片上 RAM 块 � 一个 4K × 32 位单周期双访问片上 ROM 块 � 片上存储器映射外设: – 两个串行端口 – 两个 32 位计时器 – 单通道直接存储器访问 (DMA) 协处理器,用于并发 I/O 和 CPU 操作
KFC 400 飞行控制系统在一台计算机中整合了完整的自动驾驶仪和飞行指引仪计算功能。其数字飞行计算机和集成架构使 KFC 400 能够更快地确定飞机控制要求,并且比以前的自动驾驶仪系统更平稳、更准确地执行这些要求。主要由于其双通道飞行计算机设计,KFC 400 可以更积极地控制飞机,同时提供单通道系统无法提供的安全监控级别。整个飞行控制系统采用数字化、固态设计,在节省系统重量和所需安装空间的同时,提供最大的可靠性。KFC 400 旨在优化乘客和机组人员的舒适度,同时在任何飞行情况下仍提供准确的控制响应。只要有可能,自动驾驶仪引起的飞机运动就会接近人类可感知的下限,从而确保飞行异常平稳。但是,飞行控制系统的许多最大可控值是在飞行控制系统认证过程中为每架飞机确定的。有关特定值,请参阅您的飞机的 KFC 400 飞行手册补充。
抽象的大脑计算机界面(BCIS)获取电脑图(EEG)信号,并将其解释为一种命令,该命令可以帮助使用单个通道的严重运动障碍者。BCI的目标是实现支持残疾人发展相关功能的原型。在文献中已经实施了各种研究,以实现SupeRior设计。提出的基于P300检测的BCI模型的主要新颖性与单渠道的美国相关。在这项工作中,我们使用带通滤波器的技术引入了一种脱氧方法,然后是缩放图像的变换,我们进行了连续小波变换。使用基于转移学习方法的深层神经网络对派生的图像进行了训练和验证。此pa-基于深层网络提供了BCI模型,该模型在分类准确性方面提供了更高的性能,并使用单通道EEG信号为残疾受试者提供了比特率。拟议的基于P300的BCI模型的平均信息传输率最高的是残疾人受试者的13.23至26.48位/分钟。分类性能表明,基于转移学习方法的深网可以与其他最先进的
基于有源电子扫描天线 (AESA) 的雷达具有“优雅降级”这一理想特性。此类雷达使用小型化发射-接收 (TR) 模块,少数模块故障不会导致任务失败。例如,在基于 AESA 的地面 MTI 雷达中,少数模块故障不会影响阵列性能。在这种情况下,静态地面杂波以零频率为中心,没有与运动相关的多普勒频移。然而,在机载 AESA 雷达中,由于平台运动和杂波通过天线旁瓣泄漏,地面杂波具有与角度相关的多普勒频率。因此,天线旁瓣电平决定了要针对其执行目标检测的旁瓣杂波。检测性能受信号与干扰加噪声比 (SINR) 控制。对于机载监视雷达,TR 模块的随机和系统故障及其对 SINR 的影响是特征化的。结果表明,单通道处理不能有效地提供平滑降级功能,因为故障导致的 SINR 损失很大。但是,与随机故障相比,系统故障对 SINR 损失的影响较小。还提出了一种有效的阵列馈电方案。
摘要。脑机接口使个人能够通过脑电图 (EEG) 信号与设备进行通信,在许多使用脑电波控制单元的应用中都是如此。本文介绍了一种使用 EEG 波通过眨眼和注意力水平信号控制无人机运动的新算法。通过使用支持向量机算法对眨眼进行分类并通过人工神经网络将其转换为 4 位代码,对获得的信号识别进行优化。线性回归法用于将注意力分为具有动态阈值的低级或高级,从而产生 1 位代码。算法中的运动控制由两个控制层构成。第一层提供眨眼信号的控制,第二层提供眨眼和感知到的注意力水平的控制。使用单通道 NeuroSky Mind-Wave 2 设备提取和处理 EEG 信号。所提出的算法已通过对 5 个不同年龄个体的实验测试进行了验证。结果表明,与现有算法相比,该算法具有较高的性能,对 9 个控制命令的准确率为 91.85%。该算法最多可处理 16 个命令,准确率高,适用于许多应用。
摘要 - 本文提出了一种基于多通道多域(MCMD)的知识蒸馏算法,用于使用单渠道EEG进行睡眠停滞。同时在提出的算法中学习了来自不同领域和不同渠道的知识。在拟议的工作中使用了多通道预训练和单通道微调方案。从源域中的不同通道中的知识转移到目标域中的单渠道模型。预先训练的教师学生模型方案用于将知识从多渠道教师模型提炼到单个通道学生模型,并结合了目标域中的输出传输和中间特征传递。所提出的算法达到了86.5%的最新单渠道睡眠登台精度,仅来自状态的多通道模型的0.6%恶化。与基线模型相比,有2%的改善。实验结果表明,来自多个域(不同数据集)和多个通道的知识(例如EMG,EOG)可以转移到单渠道睡眠阶段。索引术语 - 睡眠分期,转移学习,知识蒸馏,单渠道脑电图,脑部计算机界面
在结构副总经理领导下开展的这个项目中,纤维增强热塑性材料的设计和生产能力开发活动在飞机结构中发挥着重要作用,这一活动正在迅速持续进行。该项目于 2018 年 7 月启动,对采用热塑性材料的快速、经济高效的细节零件生产和组装方法进行了研究,该项目的目标是获得大批量生产能力用于我们原来的项目,特别是单通道客机。这样,飞机结构的技术水平和竞争力将通过整体热塑性产品基础设施得到提高。在此背景下,第一个全尺寸扰流板的细节部件的生产继续通过开发不同的工艺成功进行。“合并流程”是产品中拟采用的组合方法之一,已于 2020 年 6 月成功完成。中型整体式原型扰流板的组装过程也采用“电阻焊”方法成功完成。随着我们公司内部基础设施的开发,这些已知在世界上产量有限的工艺首次在封闭的结构中使用。第一个全长扰流板原型将于 2021 年完成。
KFC 500 自动飞行控制系统在一台计算机中整合了完整的自动驾驶仪和飞行指引仪计算功能。其数字飞行计算机和集成架构使 KFC 500 能够更快地确定直升机的控制要求,并且比以前的自动驾驶仪系统更平稳、更准确地执行控制要求。主要由于其双通道飞行计算机设计,KFC 500 可以更积极地控制飞机,同时提供单通道系统无法提供的安全监控水平。整个飞行控制系统采用数字化固态设计,在节省系统重量和所需安装空间的同时,提供了最大的可靠性。KFC 500 旨在优化乘客和机组人员的舒适度,同时在任何飞行情况下仍能提供准确的控制响应。只要可能,自动驾驶仪引起的飞机运动就会接近人类可感知的下限,从而确保异常平稳的飞行。在飞机认证过程中,贝尔 230 型飞行控制系统的许多最大可控值均已确定。KFC 500 与 KAD 480 中央空中数据系统和 EFS 40/50 电子飞行仪表系统集成,以提高用户友好性和系统通告能力。