摘要:无机选择性接触和卤化物钙钛矿 (HaPs) 之间的界面可能是使用这些材料制造稳定且可重复的太阳能电池的最大挑战。NiO x 是一种具有吸引力的空穴传输层,因为它适合 HaPs 的电子结构,而且高度稳定且可以低成本生产。此外,NiO x 可以通过可扩展且可控的物理沉积方法(如射频溅射)制造,以促进可扩展、无溶剂、真空沉积的基于 HaP 的太阳能电池 (PSC) 的探索。然而,NiO x 和 HaPs 之间的界面仍然无法得到很好的控制,这有时会导致缺乏稳定性和 V oc 损失。在这里,我们使用射频溅射来制造 NiO x,然后在不破坏真空的情况下用 Ni y N 层覆盖它。Ni y N 层在 PSC 生产过程中对 NiO x 进行双重保护。首先,Ni y N 层保护 NiO x 免受 Ar 等离子体将 Ni 3+ 物种还原为 Ni 2+ 的影响,从而保持 NiO x 的导电性。其次,它钝化了 NiO x 和 HaPs 之间的界面,保持了 PSC 的长期稳定性。这种双重效应将 PSC 效率从平均 16.5%(创纪录电池 17.4%)提高到平均 19%(创纪录电池 19.8%),并提高了器件稳定性。关键词:卤化物钙钛矿、太阳能电池、氧化镍、氮化镍、钝化、界面■简介
过去十年,钙钛矿 (HP) 因其在光伏 (PV) 和发光二极管 (LED) 领域的优异光电特性而备受关注。1、2 其中,基于钙钛矿的发光二极管 (PeLED) 显示出超过 20% 的外部量子效率 (EQE)。3、4 最近,大量的研究集中在无铅 HP,主要是在 PV 中,作为解决毒性问题最有前途的策略。然而,无铅 PeLED 的开发受到的关注较少,主要是因为与含铅 PeLED 相比,它们固有的稳定性较低。因此,开发采用工业友好型技术制造的无铅 PeLED 是该领域的一个重要里程碑。3D HP 具有低激子结合能,使用低维结构(如 2D HP)是制造 PeLED 的首选。 5、6 与无铅 HP PV 的情况一样,Sn-HP 是开发 PeLED 最有希望的家族。尽管如此,尽管在性能(EQE 和亮度)方面取得了长足的进步,3、7、8 Sn 2+ 在其氧化状态下容易在环境条件下发生氧化,形成四价态 Sn 4+ 。这一事实导致了 ap 型自掺杂过程,留下不需要的 Sn 2+ 空位,这些空位充当非辐射复合中心,从而猝灭了钙钛矿发射。已经提出了几种方法和努力来克服 Sn 2+ 氧化。9 一些研究证实 SnF 2 是一种广泛用作太阳能电池中 Sn 补偿剂的添加剂,10、11 引入 Cl 掺杂,10 或使用适量的金属锡。10 使用 NaBH 4
以铅(Pb 2 +)[1,2]为二价阳离子的金属卤化物钙钛矿纳米晶体(NC)由于其尺寸和形貌可调、光学性能增强和化学稳定性,在光伏、[3]光发射和检测、[4,5]激光[5]和水分解[6]等应用方面具有吸引力。然而,据报道,当用毒性较低的[7,8]二价金属(如Sn 2 +)[9,10–12,13]取代铅时,所得NC的化学稳定性较差,缺乏可调性,光学性能也不太理想。相比之下,自50多年前首次被探索以来,Sn卤化物钙钛矿块体[14,15,16]和薄膜[17]已经得到了强有力的发展。 [18] 它们在光伏电池中的性能提高是由于使用添加剂(如SnF2 [19]和离子液体[20])或通过从三维结构转换为二维混合钙钛矿(Dion-Jacobson [8,21]和Ruddlesden-Popper(RP)[22,23])成功稳定了活性层。由于两个主要挑战,块体材料中获得的稳定性增强不能简单地转化为纳米尺度:i)对于 L 1 = 10 nm 以下的 NC,表面体积比很高(其中 L 1 是长方体的最小横向尺寸),这会导致大量金属离子从 Sn 2 + 氧化为 Sn 4 + ,以及 ii)存在光学带隙相差多达 1.25 eV 的多晶型物 [15,16](即具有强光致发光 (PL) 的高导电黑色立方相 (Pm3m)、γ-正交相 (Pnma) 和非导电黄色正交相 (Pnma))。[15,16,24]
铅卤化物钙钛矿表现出一系列对光电应用尤其是光伏应用具有吸引力的性质。这些性质包括易于制造钙钛矿薄膜,该薄膜具有极长的载流子寿命和陡峭的吸收起始点,导致吸收系数 > 10 4 cm − 1 ,仅比带隙高出几个 meV。[1] 在铅卤化物钙钛矿家族中,最佳光电性能出现在约 1.5 至 1.8 eV 的带隙范围内,这对于用作串联或三结太阳能电池中的高带隙吸收剂来说是一个非常有用的范围。[2] 在这个带隙范围内,钙钛矿只有 III − V 半导体可以与之竞争,[3] 但其优势是制造成本明显较低。虽然有许多直接半导体具有良好的吸收率和适合光伏应用的带隙 [4],但很少有半导体像铅卤化物钙钛矿一样具有如此低的非辐射复合损失和如此高的发光量子效率。 [5–7] 这不仅可以在单晶中实现,而且也可以在多晶薄膜中实现。 [8] 这些多晶材料性能良好的一个具体原因是铅卤化物钙钛矿的反键价带会导致浅的本征缺陷 [9],并使铅卤化物钙钛矿家族获得了“缺陷容忍半导体”的称号。 [10,11] 目前该技术有两个主要缺点阻碍其商业化:[12] 一是材料的长期稳定性,二是使用有毒元素铅,但铅对于理解优越的光电特性至关重要 [11] 因此很难替代。目前有各种策略可以替代铅、减少铅或将其安全地包含在薄膜内。[13] 在提高稳定性方面,业界越来越重要的一种主要方法是用无机元素(如铯)取代迄今为止通常使用的有机阳离子甲铵或甲脒。[14] 这里的关键挑战是如图 1a 所示的钙钛矿结构(ABX 3 )必须包含适当大小的 A 位阳离子,以稳定钙钛矿结构核心的 BX 6 八聚体。鉴于 Pb 和 I 或(在较小程度上)Br 的尺寸相对较大,A 位阳离子必须足够大。
光电特性,以太阳能电池为基础的应用,[1,2]发光设备[3,4]和光电探测器。[5-7]在这些应用中,通过真空沉积的合成是一种工业可伸缩,低成本和环保方法,以制造有效的,稳定和耐用的光电设备。[8–11]此外,已经通过不同的途径[6,12-14]实现了OMHP的各向异性纳米结构,例如纳米棒,纳米线或纳米片,可以将模板和化学物质的生长(例如第一次使用)纳入模板和化学构造的模拟结构(15])或凹槽[17,18]在其内部生长OMHP,而第二种是使用溶液合成方法来控制生长,例如表面活性剂或阴离子 - 交换反应等。[12,19]这些半导体各向异性纳米结构的一个关键特征是它们的极化 - 敏感的光电子响应。[15,20–22]尽管我们当前的许多设备都利用极化器来产生偏光光,但存在几个缺点,例如生成的束的强度降低和/或它们在微观和纳米级设备中的集成,从而限制了OptoelectRonic Systems的整体效率。[15,23]
高能电子和 X 射线光子与诸如卤化物钙钛矿之类的光束敏感半导体的相互作用对于表征和理解这些光电材料至关重要。使用可以在纳米尺度上研究物理特性的纳米探针衍射技术,研究了电子和 X 射线辐射与最先进的 (FA 0.79 MA 0.16 Cs 0.05 )Pb(I 0.83 Br 0.17 ) 3 混合卤化物钙钛矿薄膜 (FA,甲脒;MA,甲铵) 的相互作用,使用扫描电子衍射和同步加速器纳米 X 射线衍射技术跟踪局部晶体结构随通量的变化。从中识别出钙钛矿晶粒,在 200 e − Å − 2 的通量后,与 PbBr 2 相对应的额外反射作为晶体降解相出现。这些变化伴随着相邻大角度晶粒边界上小 PbI 2 晶体的形成、针孔的形成以及从四方到立方的相变。纳米 X 射线衍射中的光子辐照也会引起类似的降解途径,表明存在共同的潜在机制。这种方法探索了这些材料的辐射极限,并提供了纳米级降解途径的描述。解决大角度晶粒边界问题对于进一步提高卤化物多晶薄膜的稳定性至关重要,尤其是对于易受高能辐射影响的应用,例如空间光伏。
使用安装在 J-PARC 材料与生命科学实验设施的单晶衍射仪 SENJU (BL18) 和超高分辨率粉末衍射仪 SuperHRPD (BL08) 收集飞行时间中子衍射数据。如图 1(a) 所示,在 MASnBr 3 的五个相中观察到的衍射图案彼此明显不同,表明晶体结构通过四个相变依次变化。该结果需要重新考虑 g、d 和 e 相的结构,其中 b - g 相和 d – e 相之间没有观察到明显的结构变化[1]。对于 MASnI 3 ,如先前报道的那样[2][3],识别出三个具有不同结构的相(图 1(b))。最低温相的结构仍然不确定,但 b 相和 g 相之间衍射图案的剧烈变化表明结构对称性从四方晶系到三斜晶系显著降低。立方a相单晶结构分析表明MA分子的质心位于立方晶胞中心之外,用最大熵法合成的分子核密度沿立方轴呈现各向异性分布。这些趋势在MASnBr 3 中表现得更为明显,表明X = Br晶体中有机-无机相互作用的影响更强。
图 3:混合 Pb-Sn 钙钛矿薄膜中缺陷的化学分析。 (ad) 对具有不同 Pb/Sn 混合比的钙钛矿组合物进行的 Sn 3d 5/2 核心能级高分辨率 XPS 光谱。 棕色线是背景,红线与原始数据最吻合。 使用合适的拟合确定薄膜中 Sn 2+ 和 Sn 4+ 的相对丰度 (%)。 (e) 不同 Pb-Sn 混合比 (蓝色) 下 Sn 4+ /Sn 2+ 比率的图,以及从 PDS 测量中获得的 Urbach 能量 (红色)。 (f) 在保持薄膜厚度的同时,具有不同 Pb/Sn 成分的钙钛矿薄膜的积分 PL 计数变化。
Baba , A.、Bai , D.、Sadoh , T.、Kenjo , A.、Nakashima , H.、Mori , H. 和 Tsurushima , T. (1997)。硅晶体中辐射诱导缺陷和非晶化的行为。物理研究中的核仪器和方法。 B 部分:光束与材料和原子的相互作用,121(1 – 4),299 – 301。,Li,X.,Qi,J.,Yu,D.,Li,J.和Gao,P.(2018)。从原子尺度洞察甲基铵碘化铅钙钛矿的结构不稳定性及其分解途径。自然通讯, 9 (1), 4807。陈绍军, 张颖, 张鑫, 赵建, 赵哲, 苏鑫, 华哲, 张建, 曹建, 和冯建军 (2020)。有机-无机杂化钙钛矿通过中间超结构的一般分解途径及其抑制机制。先进材料, 32 (29), 2001107。Cortecchia, D., Lew, K. C., So, J.-K., Bruno, A., & Soci, C. (2017)。多维钙钛矿薄膜中自组织异质相的阴极发光。材料化学, 29 (23), 10088 – 10094。Dar, MI、Jacopin, G.、Hezam, M.、Arora, N.、Zakeeruddin, SM、Deveaud, B.、Nazeeruddin, MK 和 Grätzel, M. (2016)。 CH3NH3PbI3-xBr x 钙钛矿单晶中的不对称阴极发光发射。 ACS Photonics, 3 (6), 947 – 952。Divitini, G., Cacovich, S., Matteocci, F., Cinà, L., Di Carlo, A., & Ducati, C. (2016)。原位观察钙钛矿太阳能电池的热致降解。自然能量, 1 (2), 15012。http://dx.doi.org/10.1037/0021-843X.111.1.15012 Drouin, D., Couture, R., Joly, D., Tastet, X., Aimez, V., & Gauvin, R. (2007)。 CASINO V2.42 — 为扫描电子显微镜和微分析用户提供快速且易于使用的建模工具。扫描, 29 (3), 92 – 101。Ferrer Orri, J.;莱内曼,J.;普雷斯塔特,E.;约翰斯通,DN; Tappy,N.LightSpy。 2021. Giannuzzi, LA、Geurts, R. 和 Ringnalda, J. (2005)。 2 keV Ga + FIB 铣削可减少硅中的非晶损伤。显微镜和微分析,11(S02),828-829。离子偏析对混合卤化物钙钛矿薄膜局部光学特性的影响。纳米快报, 16 (2), 1485 – 1490。Hidalgo, J., Castro-Mendez, A., & Correa-Baena, J. (2019)。钙钛矿太阳能电池的成像和映射表征工具。先进能源材料, 9 (30), 1900444。Huh, Y., Hong, K. J., & Shin, K. S. (2013)。聚焦离子束铣削在金属和电子材料中引起的非晶化。显微镜和微分析,19 (S5),33 – 37。Jeangros, Q., Duchamp, M., Werner, J., Kruth, M., Dunin-Borkowski, RE, Niesen, B., Ballif, C., & Hessler-Wyser, A. (2016)。原位 TEM 分析
在太阳能电池的制造过程中限制了半导体中的有害缺陷或将其驱动的已成为太阳能电池社会1 - 4的最根本任务之一。 这种情况在金属卤化物钙钛矿太阳能电池社区中也普遍存在,后者见证了钙钛矿太阳能电池的功率转化效率(PCE)从3.8%的3.8%增加到25.5%,而在不知所措的情况下,在缺陷量允许疫苗策略上据报道了Prog-Ress。 许多报道的钙钛矿太阳能电池现在可以通过1,000 h的操作稳定性测试9,10。 对钙钛矿太阳能电池的效率或稳定性的任何进一步提高都必须依靠对钙钛矿缺陷性质的更深入的理解,以消除所有非辐射电荷重组路径,以消除或忽略它们。 在偏置或照明下太阳能电池的降解与缺陷进化11 - 14密切相关。 但是,在实验中确定钙钛矿中缺陷的化学性质仍然是一个挑战。 近年来已经对钙钛矿中的缺陷进行了深入的研究,但是关于化学性质,它们的分布和降解过程中的演变仍然没有达成共识。 几个计算给出了有争议的结果,即不同的缺陷,包括卤化物间隙(I I-和I i +),金属空位(V Pb)或抗磷酸盐(I MA) - 导致甲基铵三铅三碘化物(MAPBI 3)15-19-15-19。 但是,没有直接的实验方法来识别批量和表面上缺陷的化学性质已成为太阳能电池社会1 - 4的最根本任务之一。这种情况在金属卤化物钙钛矿太阳能电池社区中也普遍存在,后者见证了钙钛矿太阳能电池的功率转化效率(PCE)从3.8%的3.8%增加到25.5%,而在不知所措的情况下,在缺陷量允许疫苗策略上据报道了Prog-Ress。许多报道的钙钛矿太阳能电池现在可以通过1,000 h的操作稳定性测试9,10。对钙钛矿太阳能电池的效率或稳定性的任何进一步提高都必须依靠对钙钛矿缺陷性质的更深入的理解,以消除所有非辐射电荷重组路径,以消除或忽略它们。在偏置或照明下太阳能电池的降解与缺陷进化11 - 14密切相关。但是,在实验中确定钙钛矿中缺陷的化学性质仍然是一个挑战。近年来已经对钙钛矿中的缺陷进行了深入的研究,但是关于化学性质,它们的分布和降解过程中的演变仍然没有达成共识。几个计算给出了有争议的结果,即不同的缺陷,包括卤化物间隙(I I-和I i +),金属空位(V Pb)或抗磷酸盐(I MA) - 导致甲基铵三铅三碘化物(MAPBI 3)15-19-15-19。但是,没有直接的实验方法来识别批量和表面上缺陷的化学性质最近的实验试图鉴定钙壶中缺陷的化学性质,暗示了对MAPBI 3中深层跨度跨性光谱典型表征20; MAPBI 3中深层陷阱的带负电荷的碘化物间质(I-I-),MA空位(V MA-)和MA间隙(MA I +)的可能起源。 i i-作为甲氨基三碘铅(FAPBI 3)中的主要浅阴离子缺陷,具有正电子歼灭光谱测量结果21或fa i antisite作为Fama Perovskite 22的主要表面深陷阱缺陷。