地理位置分散,包括新墨西哥州索科罗 (Det 1)、英属印度洋领地 (BIOT) 迭戈加西亚 (Det 2) 和夏威夷毛伊岛 (Det 3)。每个 Det 都配备三台光学望远镜(在整个 PWS 中称为光学传感器)。第 21 作战大队 (21 OG) 位于科罗拉多州彼得森空军基地 (AFB),通过位于佛罗里达州埃格林空军基地的第 20 空间控制中队 (20 SPCS) 的职能指挥官负责所有 GEODSS Det。GEODSS 系统通过探测和监视深空卫星来支持美国战略司令部 (USSTRATCOM) 和战区作战人员的需求。该系统探测、跟踪、识别和报告望远镜视野范围内地球轨道上所有深空人造物体。GEODSS Det 使用三台 1 米望远镜执行任务,每台望远镜的视野为 1.68 度;低光照水平、电光相机;以及高速计算机。这些光学传感器可检测从太空物体反射的太阳光。任务操作在民用日落和日出之间进行。卫星信息提供给加利福尼亚州范登堡空军基地的联合太空作战中心和第 18 太空控制中队 (JspOC/18 SPCS)。
背景UNEP研究表明,空气污染是死亡率的第五领先危险因素。空气污染估计是2017年亚太地区约340万人死亡的原因。尽管国家和城市已经实施了各种空气污染管理政策,但这些政策只会抵消人口不断增长和城市化所产生的额外污染2。在1990年至2015年之间,亚太地区3的人口加权PM 2.5浓度增长了19%,超过了全球平均增长10%。在2018年,亚太地区是最受污染的100个城市中的96个所在地(PM2.5)4。在至少发达国家中暴露于颗粒物污染的趋势往往更大,而对流层臭氧浓度在更发达或迅速发展的国家和地区(例如南亚)中增长快,在南亚,O3污染的增长速度比全球增长率快得多。5空气质量监测主要基于政府使用其领土内的基于地面的空气质量监测网络的原位测量。但是,基于地面的监视有局限性,因为监测站主要集中在人口稠密的城市,这些城市具有刚性安装要求和非常狭窄的空间覆盖范围。卫星观测通过在更广泛的区域提供数据来补充地面网络,这对于没有安装地面监视器的地区特别有用,例如农村地区或空气污染监测设备或容量有限的国家。此卫星信息有助于评估和改善空气质量和化学运输模型,从更广泛的角度来看,并允许更好地生产每小时的空气污染预测,通过广泛的平台和应用程序可以访问公众。从长远来看,可以监控政策干预的有效性。对于短期,可以识别和解决因排放库存或地面监测站而错过的污染热点。此数据可以填补通过监测站收集的地面数据留下的信息空白,以帮助基于证据的政策制定,不仅解决国家和地方空气质量,而且解决跨界污染问题。
根据联合国环境规划署最近的一项研究,空气污染是导致死亡的第五大风险因素,据估计,2017 年空气污染造成亚太地区约 340 万人死亡 1 。尽管各国和各城市都实施了各种空气污染管理政策,但这些政策只能抵消人口增长和城市化带来的额外污染 2 。1990 年至 2015 年间,亚太地区人口加权的 PM 2.5 浓度增长了 19% 3 ,超过全球 10% 的增幅。2018 年,细颗粒物 (PM2.5) 污染最严重的 100 个城市中,有 96 个位于亚太地区 4 。最不发达国家接触颗粒物污染的情况往往更大,而对流层臭氧浓度在较发达或快速发展的国家和地区增长更快,如南亚,那里的 O3 污染增长速度远远快于全球增长率。 5 空气质量监测主要基于各国政府在其领土内使用地面空气质量监测网络进行的现场测量。然而,地面监测有局限性,因为监测站大多集中在人口稠密的城市,安装要求严格,空间覆盖范围非常狭窄。此外,空气污染监测站通常设在城市地区,但污染物可以产生或传播很远的距离,不仅影响农村地区,还影响其他国家。卫星观测通过提供更广泛区域的数据来补充地面网络,这对于没有安装地面监测器的地区特别有用,例如农村地区或空气污染监测设备或能力有限的国家。这些卫星信息将有助于评估和改进空气质量和化学物质运输模型、排放清单,并允许更好地制作每小时空气污染预报,公众可以通过广泛的平台和应用程序获取这些预报。从长远来看,可以监测政策干预的有效性。就短期而言,可以确定和解决排放清单或地面监测站遗漏的污染热点。这些数据可以填补监测站收集的地面数据留下的信息空白,有助于制定基于证据的政策,不仅解决国家和地方的空气质量问题,还解决跨境污染问题。亚太地区会员国认识到这一问题的紧迫性,于 2019 年通过了关于“加强区域合作应对亚洲及太平洋空气污染挑战”的第 75/4 号决议。该决议鼓励分享与空气污染有关的经验和信息以及应对措施