为什么选择 Kratos 选择经验丰富且久经考验的 ASCA 对于获得 IA-PRE APL 资格至关重要。作为 CMMC (C3PAO)、FedRAMP (3PAO) 和现在的 IA-PRE (ASCA) 的首批也是最大的第三方评估机构之一,Kratos 拥有多年在政府/商业标准和各种合规框架方面强大的合规和认证经验。凭借 Kratos 以客户为先的合规评估方法,您可以确保获得个性化的客户关注和支持以及最先进的审计技术和流程。Kratos 的灵活方法可最大限度地减少中断,因为评估是按照您的时间表进行的,而 Kratos 则负责管理从启动到授权的整个过程。此外,作为虚拟化卫星地面系统(卫星 C2、信号处理、保护和传输)的首要提供商,Kratos 是卫星行业和合规框架服务领域公认的领导者。
国防部数十年来一直使用商业SATCOM服务来支持其在世界各地的运营,以完成各种任务。例如,军事服务使用商业SATCOM来支持军事力量的指挥和控制,例如移动船只或车辆。商业公司开发,建造和推出提供这些服务的卫星,包括语音,数据和其他类型的连接性。DOD用户除了少数例外,还需要通过与SATCOM提供商签订合同的商业卫星通信办公室(CSCO)购买这些服务。国防部报告在过去十年中,通过CSCO采购了超过85%的商业SATCOM能力。就像现有的军事SATCOM一样,国防部目前的大部分商业卫星都通过Geo中的卫星。图3显示了国防部在商业卫星上的支出,逐个轨道在2023财政年度为7.88亿美元。
即使对于服务区域内的人,覆盖范围的可靠性在地理上受到陆地基础设施的限制。然而,降低卫星制造和部署成本已加速了将广阔的星座推向低地轨道(LEO),提供了提高的信号质量,更高的数据速度和更具成本效益的终端硬件。通过利用Leo卫星星座,D2D技术可以在没有地面基础设施的情况下进行通信,克服偏远地区的覆盖范围限制。几项关键的技术创新已经实现了D2D通信。高级波束形成技术[26]允许精确的信号专注于特定地理区域,增强信号质量并减少干扰。软件定义的有效载荷[25]提供动态频谱分配,可实时适应不同的用户需求和监管要求。增强的电力管理系统[33]具有延长卫星寿命并提高了能量效率。组件小型化和终端技术进步使标准智能手机和IoT设备能够直接与卫星通信。这些新事物共同克服了传统的障碍,例如信号衰减和设备兼容性,促进了无接缝的D2D通信并提高了全球连通性。除了技术进步外,监管进步还起着至关重要的作用。FCC拥有高级移动网络运营商 - 卫星网络运营商(MNO-SNO)频谱共享框架,从而可以在陆地和卫星网络之间更好地集成[29]。通过允许卫星操作员从MNOS租赁Spectrum,FCC的框架促进了动态和竞争性的卫星服务,推动MNOS和SNOS之间的和谐,并促进了多租户Leo卫星网络[39]。这样的频谱共享策略可以为最终用户提供更大的灵活性和协调性。表1总结了商业领域中关键D2D部署的状态。我们根据直接到X定义D2D通用的“类型”,其中X采用
抽象的卫星通信在技术进步和小型卫星星座的扩散的推动下,在新的太空时代已经是必不可少的。本调查报告旨在对这个时代的卫星通信现状进行全面分析,研究技术进步,新兴趋势和未来挑战。它探讨了卫星通信的历史背景,突出了卫星的微型化,高通量卫星的部署以及卫星网络与地面基础设施的集成。此外,它解决了该行业所面临的挑战,包括光谱拥塞,太空碎片管理,网络安全威胁和监管考虑因素。调查提供了对低地球轨道卫星星座优势的见解。它还讨论了偏远地区的卫星通信计划,突出了其广泛的覆盖范围,连接解决方案,灾难弹性和不同的应用程序。该报告结束了,以确认卫星通信的局限性,同时强调正在进行的技术进步,以应对挑战,并提高偏远地区共识服务的效率和可靠性。
摘要 — 提出了一种双波段、正交极化线性到圆极化 (LP-to-CP) 转换器的系统设计。这类极化转换器可以在两个独立的非相邻频带中将线性极化波转换为右旋和左旋圆极化 (RHCP 和 LHCP) 波。报道的极化器由三个级联的双各向同性薄片导纳组成,由两个各向同性介电板隔开。通过阻抗边界条件研究电磁问题。设计中采用了周期性加载传输线的传输矩阵分析。建立了一个分析模型,并推导出每个薄片导纳频率响应的闭式表达式。该方法避免了使用多参数优化程序。提出了一种用于 K/Ka 波段卫星通信应用的双波段、正交极化 LP-to-CP 转换器的示例。偏振器在 K/Ka 波段的发射和接收通道上分别执行 LP 到 LHCP 和 LP 到 RHCP 的转换。该设计通过原型进行了验证。在垂直入射下,偏振器在 18-22.2 GHz(∼ 21%)和 28.7-30.4 GHz(∼ 6%)波段上的轴比 (AR) 低于 3 dB。在相同的两个波段内,总透射率高于 -1 dB。扫描角度在 ± 45 ◦ 以内时性能稳定。对于 45 ◦ 的入射角,在 17-22 GHz(∼ 25.6%)和 28.6-30 GHz(∼ 4.7%)波段上的 AR 低于 3 dB,总透射率高于 -1.2 dB。
Thibaut Faivre:我们目睹了批判性通信的数字化转型。这转化为从窄带到宽带技术的过渡的开始。在某些国家 /地区,公共安全组织已经将其全国性的关键沟通解决方案带到了法国,例如法国,其Réseauduedu Futur(RRF)或西班牙与Sistema de radiocomunicaciones digitales digitales dementes de Empercia del Expencia del Estado(Sirdee)。其他组织正在选择缓慢的过渡策略或混合配置,因为这些类型的过渡是需要大量投资和变更管理的长期项目。无论如何,宽带和窄带技术并非相反,我们可以从两者中获得最好的作用。这两个区域之间有许多连接,几年前就不存在。
“可持续移动自主和弹性 6G 卫星通信”项目获得 SSF 的 6000 万瑞典克朗资助,用于运营一个多学科研究中心。该中心是大学、研究机构和大量专业公司以及多个地区和当局合作的结果。项目主要负责人是 KTH 的 Cicek Cavdar。该中心的研究将由总共 21 个合作伙伴负责,分布在:大学:皇家理工学院 (KTH)、吕勒奥理工大学 (LTU),研究机构:RISE、瑞典空间物理研究所 (IRF) 公司:爱立信、萨博、Ovzon、Beyond Gravity、Forsway、Satcube、瑞典空间公司 (SSC)、NorthernWave、Primekey、Airforestry,当局、组织和地区:邮政和电信局 (PTS)、欧洲非相干散射科学协会 (EISCAT)、瑞典交通管理局、瑞典森林工业、北布滕地区、西布滕地区、斯德哥尔摩地区。该中心还得到了多家国际大学和公司的支持,包括 Eutelsat-OneWeb、空中客车、Viasat 和 Thales Alenia Space。这些合作伙伴来自整个价值链:监管机构、系统制造商、运营商和用户。
高级工程师系统设计,T-Mobile USA 摘要 卫星通信已成为连接偏远或服务不足地区与世界其他地区的重要工具,它解决了大多数地面网络遇到的限制。能够不受地理障碍干扰地提供覆盖和信号,这对于在没有或薄弱物理基础设施的地区消除数字鸿沟至关重要。它在管理紧急请求(例如 911 紧急热线)和改进现有的灾难响应技术方面发挥着核心作用。本文解释了卫星轨道的分类、卫星信号的传输或接收方式以及带宽控制和卫星干扰中的独特问题。它还关注卫星网络的社会和经济影响,并特别考虑了它们在医疗保健、教育和灾害管理中的应用。卫星通信的典型示例包括紧急情况下的精确定位和在灾难事件期间主要用于通信的人员移动。此外,本文还简要介绍了卫星通信的当代发展,从低地球轨道 (LEO) 星座到卫星地面系统和人工智能驱动的资源管理。本文进行了详细的描述和计算,并使用表格、流程图和图形来说明和比较卫星和地面网络在不同情况下的性能。最后,本文展示了卫星通信对于全球一体化、连接和灾难响应的关键本质,以指导其未来发展以及为在可预见的未来保持其增长而需要制定的政策和框架。关键词:卫星通信、911 紧急呼叫、远程连接、灾难管理、电信政策、数字鸿沟。1. 简介 1.1 背景事实上,卫星通信是当代连通性最重要的组成部分之一,它成功地解决了地面通信系统特有的物理和结构问题。与光纤电缆或蜂窝塔不同,卫星在太空中工作,不受难以到达的区域的影响。这些能力使卫星在缩小数字鸿沟方面无可替代,为卫星提供了
无线通信技术的飞速发展极大地推动了卫星通信的发展。卫星通信具有信息传输范围广、支持多个接收机同时通信等优势。随着卫星通信技术的不断进步,人们对更高传输速度和更宽频段的需求不断增加,这增加了人们对毫米波频谱中 Ka 波段频率的兴趣。与低频段相比,Ka 波段的数据传输速率更快,而且由于其超高频特性,也易于实现超低延迟。然而,大多数 K/Ka 波段卫星距离地面终端约 35,000 公里,距离和大气条件会导致信号衰减很大。