• Xcel Energy, San Diego Gas & Electric Company (SDG&E), Southern Company, Holy Cross Energy, and Central Georgia EMC • GE, Schneider Electric, Survalent, Oracle, and Opal-RT • National Rural Electric Cooperative Association (NRECA) and Electric Power Research Institute (EPRI) • Pacific Northwest National Laboratory (PNNL; GridAPPS-D) and Argonne National Laboratory.
广泛用作航空航天和核工程(在裂变和聚变应用)的结构材料、金属加工工具和坩埚,以及腐蚀环境中的化学反应容器。最近,所有组成元素含量相当的复杂浓缩合金 (CCA) 已成为 RA 研究的一个新课题 [3, 4, 5, 6]。从纯金属到 CCA 的转变通常会改善材料性能和/或出现新的有益工程特性。在过去的 15-20 年里,这类合金一直是深入研究的主题。如今广泛讨论的高熵合金 [7, 8, 9] 是 CCA 的一个特例,其中合金元素的数量等于或超过五种。但即使涉及的元素数量只有三四种,与纯金属相比,高构型熵和严重的晶格畸变也会导致 CCA 材料性质发生质的变化。Senkov 等人。 [3, 10] 研究了一种 W 0.25 Ta 0.25 Mo 0.25 Nb 0.25 合金,该合金在高温下表现出有趣的力学性能:在 850K 至 1800K 的温度范围内,屈服应力极高(约 600 MPa)并且似乎几乎与温度无关。人们认为造成这一不寻常特征的主要机制之一是 CCA 的局部晶格畸变 (LLD) [7, 11],它抑制了位错运动。根据这一推测,在 Zou 等人最近的研究中 [12],他们通过高分辨率透射电子显微镜证实了 Nb-Mo-Ta-W 耐火合金中的局部畸变。经典分子动力学 (MD) 模拟是研究 CCA 特性最有力的工具之一。这种建模的关键部分是原子间势。因此,为此类系统开发可靠且广泛适用的势能是计算材料科学中的一项基本任务。对于耐火 CCA,Zhou 等人 [13, 14] 报道了一类可扩展至合金的嵌入式原子方法 (EAM) 势能。2013 年,Lin 等人 [15] 将 Zr 和 Nb 组分纳入该组势能中。这些势能被广泛用于探测耐火 CCA 中缺陷的行为 [16, 17, 18, 19, 20]。然而,由于可预测性较差,使用该模型获得的模拟结果最多只能视为定性的——即使对于纯金属也是如此。例如,对于纯钨,Zhou 的势能严重高估了熔化温度(比实验值高出近 1000K)[21],并且与从头算计算结果相比,显示出错误的螺位错 Peierls 势垒特征(峰值和形状)[22]。对于纯钼,Zhou 的模型给出了螺位错的极化核心
b'. CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是'
摘要 — 同步相量技术广泛应用于现代能源管理系统,用于在微观层面监测电网健康状况并实时执行必要的纠正措施;然而,集成相量设备和数据聚合器面临着多种网络安全威胁。本文提出了一种基于联邦机器学习 (FML) 的异常检测系统,用于检测同步相量网络中的几种数据完整性攻击。所提出的方法集成了水平 FML 技术,由基于变电站的本地模型和基于控制中心的全局模型组成。所提出的方法包括使用包含网络和电网信息的异构数据集训练本地模型,并通过共享模型梯度通过多次迭代更新全局模型。最后,将训练好的全局模型应用于识别网络攻击、正常运行和物理事件。为了验证概念证明,我们使用密西西比州立大学和橡树岭国家实验室生成的合成数据集,利用国家可再生能源实验室的高性能计算资源来训练和测试分类模型。我们的实验结果通过多项性能指标计算得出,结果表明,所提出的方法在二分类、三分类和多分类过程中表现出一致的性能,同时确保了同步相量数据的隐私。关键词——联合机器学习、同步相量、异常检测系统、网络安全。
美国国家可再生能源实验室 (NREL) 与美国能源部 (DOE) 水力技术办公室 (WPTO) 合作,开发了一种独特的研发方法,以推进海洋能源海水淡化。海水淡化是 WPTO 推动蓝色经济 TM 投资组合 [1] 的一项基础投资,也是该投资组合的首笔投资。NREL 的海洋能源海水淡化涵盖技术经济可行性研究、数值建模和组件和子系统级别的实验室测试,以及液压和电动反渗透波浪能转换器 (HERO WEC) 的开发。这种多层次的方法实现了创新的反馈循环,其中从实验室和现场实验中获得的数据和经验教训可用于改进建模工具和分析技术,确定未来年度活动的优先级,并改进 NREL 和整个 WPTO 投资组合内的战略方向。 NREL 主导的研究的主要目标是确定与波浪能海水淡化商业化相关的关键障碍,并开发海洋能源行业可以采用的解决方案。值得注意的是,虽然 WPTO 的海洋能源组合包括波浪能、潮汐能、洋流能、热梯度能和压力梯度能,但大部分海洋能源海水淡化工作都集中在波浪能海水淡化上。同时,这些研发活动可以帮助为行业和学术技术提供技术援助和支持。这两个轨道有助于建立一个共同的解决方案社区方法,同时也确定了发展强劲行业所必需的海洋部门以外的关键利益相关者、政府机构和其他组织。
这些结果表明,GeoTES 适合储存大量能源。大型能源储存可用于在短时间和长时间内调度电力。因此,GeoTES 可能提供一系列能源储存服务,包括负荷转移、套利、电网可靠性、能源容量和季节性储存。GeoTES 有许多不同的配置,具体取决于能源来源、储层特征和当地能源市场。例如,以前的研究考虑储存由抛物面槽式集热器产生的太阳能热能,这将适用于太阳辐照度高的地区(Sharan 等人,2020 年)。还可以设想使用电加热器或热泵将多余的电力转化为热能。其他合适的能源包括工业过程产生的废热。
• $8B for at least four regional clean hydrogen hubs • $1B for electrolysis research, development and demonstration • $500M for clean hydrogen technology manufacturing and recycling R&D • Aligns with Hydrogen Shot priorities by directing work to reduce the cost of clean hydrogen to $2 per kilogram by 2026 • Requires developing a National Hydrogen Strategy and Roadmap President Biden Signs the Bipartisan Infrastructure Bill on 2021年11月15日。照片来源:肯尼·霍尔斯顿/盖蒂图像
摘要 - 分布式能源资源(DER)在批发电力市场中的参与限制了对电力系统安全性和弹性的使用。2020年9月,联邦能源监管委员会(FERC)批准了减少这些障碍的命令。FERC订单号2222使DER聚合器参与批发电力市场。包括可再生的生成和技术,这些技术通过提高网格的灵活性和弹性来支持可再生生成的整合。要求批发能源市场允许DER聚合者的参与为DER在这些市场中具有竞争力的途径。随着汇总的贡献不断增加,聚合者在支持电网安全和弹性方面的作用将变得更加至关重要。本文审查了工作,这些工作表明了DER聚合器如何通过技术能力,运营策略和安全的通信体系结构提供弹性支持。社会经济的影响和聚合者的影响,包括对社会弹性的影响。在调查不同但相互联系的主题的当前最新技术时,我们说明了聚合器如何成为增强电网安全性的电力系统参与者。没有一种大小的方法 - 在包括越来越多的Der聚合器的功率网格中增强弹性的方法可以增强弹性,但是聚合器有很多选择可以为更弹性,更安全的电网做出贡献。索引术语 - 参数,网络安全,分布式能源,能源安全,弹性
摘要 — 为了促进分布式能源资源管理系统 (DERMS) 的实施,我们建议在下一代智能电表中插入一个承载 DERMS 算法的电网边缘分布式能源资源 (DER) 芯片。这将为 DERMS 技术的广泛采用开辟道路,因为许多公用事业公司计划在不久的将来投资先进的计量基础设施。这也将弥合电力公用事业公司和电表背后的 DER 之间的差距。DER 芯片旨在遵循来自 DERMS 协调器的功率方向信号,同时平衡其本地目标。我们在 DERMS 在现实世界中可能面临的三种情况下使用控制器和电源硬件在环评估测试了该芯片。DER 芯片能够有效地指挥四个异构 DER 响应 DERMS 协调器的电网服务(例如,电压调节和虚拟发电厂)。
摘要 动力输出装置 (PTO) 是波浪能转换不可或缺的一部分,其设计过程并非易事。更好的 PTO 以及为各种应用选择和设计 PTO 架构的更好流程将有利于帮助为蓝色经济提供动力的设备,因为它们可以减少在 PTO 设计上花费的时间和金钱,并提高这些设备的整体能量捕获性能。本文记录了小型浪涌型波浪能转换器 (WEC) 的 PTO 选择过程,旨在为未来的 PTO 选择过程提供参考。在 WEC-Sim 中评估了三种 PTO 架构:液压止回阀 PTO、液压主动阀 PTO 和直接电动 PTO。构建了每个 PTO 的简单模型。由于最初没有小型设备的模型,因此在大型设备上模拟 PTO。使用弗劳德缩放法缩小结果,并与直接模拟小规模模型的结果进行比较。由于这项工作尚处于设计阶段的早期,需要对 PTO 选项进行粗略研究,因此我们做出了严格的假设。具体而言,我们将研究控制的有效性以及能量转换的效率。但是,能量捕获只是考虑的一部分;在选择 PTO 时还需要考虑物流问题。例如,大型 WEC 的组件非常大且昂贵,因此定制 PTO 组件可能有意义,但小型 WEC 将从现成的可用性中受益,因为定制成本将是小规模部署总资本成本的很大一部分。潜水式现成组件对于液压 PTO 来说更容易采购。由于高效的控制、高效的能量转换以及海洋级组件的可用性,为这种小型浪涌型 WEC 选择了主动阀液压 PTO。