摘要 - 波能量是电气系统设计师的独特领域。高峰值和低平均功率电位不断变化的能量输入很难通过传统手段来利用和控制。为了为蓝色经济提供动力,低功率波能转换器(WEC)需要电池才能存储。安全有效地从波浪中充电电池,需要一个充电控制器才能正确监视和控制电池电量,并且电流转移到电池电池。当前,其他续签一代(例如风,水力和太阳能)存在现成的电荷控制器。验证了两个拓扑:降压转换器和一个脉冲宽度调制(PWM)电荷控制器。使用LAB干燥测试床,模拟波能输入,以正确验证现有电荷控制器技术的有效性,从而确定有效利用波浪能所需的缺点和改进。索引项 - 波能量,DC/DC转换器,电荷控制器,电池存储,波能转换器
通过技术经济评估 (TEA) 模型实施的地热成本和性能评估对于美国能源部 (DOE) 和其他地热行业利益相关者评估地热技术的现状和确定商业上可行的地热开发的现有障碍至关重要。地热发电技术评估模型 (GETEM) 是一种主要的 TEA 工具,用于估算传统水热系统和增强型地热系统 (EGS) 的经济可行性和平准化能源成本 (LCOE)。自 2021 年以来,GETEM 已从复杂的电子表格模型转变为国家可再生能源实验室 (NREL) 开发的系统顾问模型 (SAM) 中用户友好的工具。除了能够扩大地热模型在其他可再生资源中的可见性之外,在 SAM 中使用 GETEM 还具有模拟自动化、更好的可用性、更新跟踪、主动用户输入/反馈和扩展财务建模的优势。 GETEM 用于制定 NREL 年度技术基线 (ATB) 的供应曲线,该基线为可再生能源潜力 (reV) 和区域能源部署系统 (ReEDS) 模型提供输入。NREL reV 模型中的地热模块通过在土地使用特征约束内定义地热资源与现有电网基础设施的地理空间交集来评估美国本土的地热能源潜力。ReEDS 模型是一种容量扩展模型,用于根据当前能源成本和政策模拟美国发电和输电系统的长期建设和运营。为了确保在我们的模型转换和开发中更好地体现当前的行业趋势,我们组织了为期两天的虚拟研讨会,以征求地热行业利益相关者对我们当前在技术经济、资源评估和地热技术部署场景建模方面的方法和假设的意见和建议。参与者包括开发商、运营商、投资者、监管机构、系统建模者、国家实验室研究人员、顾问和其他利益相关者。在本次研讨会上,我们获得了利益相关者对当前地热电厂性能(即容量系数)、最新钻探成本和学习曲线以及闭环和超热岩地热等下一代技术的见解。本次研讨会的其他成果及其对未来地热开发可行性、资源可用性和容量扩展研究的影响进行了汇编和讨论。
我们推出了 PowerGridworld 开源软件包,为用户提供轻量级、模块化和可定制的框架,用于创建以电力系统为中心的多智能体 Gym 环境,这些环境可轻松与现有的强化学习 (RL) 训练框架集成。尽管存在许多用于训练多智能体 RL (MARL) 策略的框架,但没有一个可以快速制作原型并开发环境本身,尤其是在异构(复合、多设备)电力系统的背景下,其中需要电力流解决方案来定义电网级变量和成本。PowerGridworld 有助于填补这一空白。为了突出 PowerGridworld 的主要功能,我们提供了两个案例研究,并演示了使用 OpenAI 的多智能体深度确定性策略梯度 (MADDPG) 和 RL-Lib 的近端策略优化 (PPO) 算法学习 MARL 策略。在这两种情况下,至少有一些智能体子集在每个时间步骤中将电力流解决方案的元素作为其奖励(负成本)结构的一部分。
1 国家可再生能源实验室综合移动科学中心,科罗拉多州戈尔登 80401;电子邮件:Stanley.Young@nrel.gov 2 国家可再生能源实验室计算科学中心,科罗拉多州戈尔登 80401;电子邮件:Erik.Bensen@nrel.gov 3 北卡罗来纳大学夏洛特分校系统工程与工程管理系,北卡罗来纳州夏洛特 28223;电子邮件:Lei.Zhu@uncc.edu 4 爱荷华州立大学土木、建筑与环境工程系,爱荷华州埃姆斯 50011;电子邮件:cmday@iastate.edu 5 自动移动系统有限责任公司,德克萨斯州休斯顿;电子邮件:jsamlott.amsllc@gmail.com 6 国家可再生能源实验室国家风能技术中心,科罗拉多州戈尔登 80401;电子邮件:Rimple.Sandhu@nrel.gov 7 国家可再生能源实验室计算科学中心,科罗拉多州戈尔登 80401;电子邮件:Charles.Tripp@nrel.gov 8 国家可再生能源实验室计算科学中心,科罗拉多州戈尔登 80401;电子邮件:Peter.Graf@nrel.gov
基于全基因组测序的链霉菌属的表征。 6(4):关注天然产品1 2 MarcelaProençaBorba1(0000-0003-4909-969X),JoãoPaulowitusk 1,DéboraMarchesan Cunha 1,Daiana deiana de Lima- 3 Mora-3 Morales 2,3 591-6514)4 5 1-农业和环境微生物学的研究生课程,基本健康科学研究所,6联邦大学里奥格兰德大学,巴西Porto Alegre,巴西Porto Alegre 7 2-生物信息知识从Porto Alegre开始阿雷格里、南里奥格兰德州、阿雷格里港、巴西 10 11 通讯作者:Marcela Proença Borba(ceh.proenca@gmail.com) 12 13 关键词 14 次生代谢产物、基因组挖掘、放线菌、生物合成基因簇、植物病原真菌。 15 16 数据摘要 17 该全基因组霰弹枪项目已存入 DDBJ/ENA/GenBank,登录号为 18 VIFW00000000。由于核苷酸序列数量巨大,在整个手稿和在线资源的补充数据中发现了数据库登录号。 20 21 摘要 22 我们对链霉菌属的整个基因组进行了测序。 6(4)是从番茄根部分离得到的,对植物病原真菌具有抗真菌活性,主要针对番茄根结线虫(Bipolaris sorokiniana)。该基因组有近 7 Mb 和 24 3,368 种假设蛋白质,这些蛋白质在 Uniprot 中进行了分析和表征,重点是 25 种生物化合物。为了表征和鉴定该分离株,进行了 MLST 分析,最终得到一种新的 ST,26 归类为 ST64。构建了表型和系统发育树来研究链霉菌属。 6(4)进化27和序列相似性,该分离株是与Streptomyces prasinus和Streptomyces viridosporus更接近的菌株。已知链霉菌属具有强大的代谢能力,并且存在隐秘基因。这 29 个基因通常以簇的形式存在,负责生产多种天然产物,其中主要是抗生素。此外,6(4)显示通过反SMASH扩增出11个生物合成基因簇,其中包括3个簇31PKS和NRPS类型。 32 33 34 简介 35
摘要 — 将大量分布式能源 (DER) 整合到电网中需要一种可扩展的电力平衡方法。我们将电力平衡问题表述为一个前瞻优化问题,由基于模型预测控制 (MPC) 框架的配电系统聚合器按顺序解决。解决大规模前瞻控制问题需要正确配置控制步骤。在本文中,为了解决大规模控制问题,我们提出了一种可变的时间粒度,其中靠近当前控制步骤的控制时间步骤具有更精细的分辨率。聚合器目标包括最大化电力生产收入并最小化电力购买费用、可再生能源削减以及能源存储和电动汽车 (EV) 充电站的里程成本,同时满足系统容量和运营约束。控制问题被表述为混合整数线性规划 (MILP),并使用 XpressMP 求解器进行求解。我们进行了模拟,考虑了由 2507 个设备(可控 DER)组成的大型配电网络的铜板表示,包括可削减的光伏 (PV)、储能电池、电动汽车充电站以及带有供暖、通风和空调装置 (HVAC) 的建筑物。我们展示了所提出的方法在交互式管理 DER 以实现最大能源交易利润和本地供需电力平衡方面的有效性。最后,我们证明了所提出的方法在计算时间方面优于其他基准控制器,同时不影响运行性能。索引术语 — 配电系统、DER、电网整合、电力市场、模型预测控制、电力平衡。
一个工作组的重点是使用现场可再生能源和存储,这是一种在能源效率之后的关键脱碳策略。更好的气候挑战在现场可再生能源和存储工作组的成员首先确定实施这些技术的障碍。然后将解决方案集思广益,以支持投资组合建筑所有者从单个系统转变为广泛实现。示例见解包括提高对安装过程和位置决策的理解,使业务案例向相关的利益相关者提供,讨论整个过程中意外的挑战,并在投资组合中复制这些技术。本文详细介绍了有价值的市场反馈,并突出了迈向广泛部署可再生能源和存储解决方案的途径。
摘要 — 随着不稳定的可再生能源发电和网络物理中断的日益普及,确保大容量电力系统的安全运行已变得前所未有的具有挑战性。由于通信和计算成本限制了集中式系统调度只能每隔几分钟调用一次,而且纯本地方案已被证明是不够的,因此人们提倡使用分布式控制来实时处理意外的系统状况。然而,分布式控制方案的适用性从根本上受到其需要广泛通信和模型认知的限制。在这种情况下,我们提出了一种混合、低通信、饱和驱动的协议,用于协调分布在物理系统上的控制代理,并允许通过“热线”通信网络与对等代理通信。根据该协议,当代理根据本地测量观察到约束违规时,它们会在本地做出响应,直到其控制资源饱和,在这种情况下,它们会向对等代理发送信标以寻求帮助。该方案确保通过快速的本地控制有效缓解轻微违规行为,而严重违规行为则可以通过相对较小的代理集之间的协作来处理。我们通过 IEEE 14 总线测试馈线上的数值测试来评估该方案的性能,其中代理在负载变化和严重低压/高压事件的各种场景下根据噪声测量采取行动。
摘要。研究团队对先进槽式太阳能设计 — Solar Dynamics Sunbeam-MT(Sunbeam Mid-Term)进行了详细的自下而上的制造成本估算。这包括在制造工厂中制造和组装的所有组件(例如空间框架和臂)以及购买的零件(例如镜子和接收器管)。已经对施工和装配活动进行了估算,然后确定了估计的安装成本。先前的分析已经对 schlaich bergermann partner (sbp) 的 Ultimate Trough 进行了详细的自下而上的制造、装配和施工分析,这项工作根据与 SunBeam-MT 类似的孔径面积更新了太阳能场成本估算。对于此分析,Ultimate Trough 被视为商用槽式太阳能系统,Sunbeam-MT 被视为先进槽式太阳能系统。为便于比较,Sunbeam-MT 和 Ultimate Trough 都采用了一个孔径面积约为 800,000 平方米(m 2 )的太阳能场建模,相当于一个大型 CSP 工厂。分析发现,Sunbeam-MT 的潜在安装成本估计可能为 120 美元/平方米,但必须按规模建造才能证实这一估计。与之前的分析相比,采用美国条件的商用 Ultimate Trough 的安装成本已从 178 美元/平方米降至 152 美元/平方米。如果使用中国钢材,这两种设计的成本甚至可能更低。
目前,超过 30% 的电能经过电力电子设备,据推测未来十年这一比例可能会增长到 80%。宽带隙半导体市场在 2019 年已经接近 10 亿美元,预计到 2028 年将达到近 70 亿美元。尽管成本高昂,但由于尺寸更小、效率更高,SiC 在某些应用(如混合动力汽车和电动汽车)中开始取代现有的 Si 技术。我们回顾并报告了 IHS Markit 对宽带隙半导体技术的市场预测,并重点介绍了 Ga 2 O 3 晶片制造成本的技术经济分析结果。具体而言,我们关注使用当前的制造方法 Ga 2 O 3 比 SiC 更具经济优势的潜力,然后确定可以进一步降低 Ga 2 O 3 晶片批量成本的研究机会。
