在癌症检测领域,负担得起,快速和用户友好的传感器的发展能够检测到包括肺癌(LC)在内的各种癌症生物标志物(包括肺癌)具有最大意义。传感器有望在各种疾病的早期诊断中发挥关键作用。在选项范围内,传感器由于其成本效益,简单性和有希望的分析性能而尤其吸引了各种疾病的诊断。对分子印刷聚合物(MIP)的应用作为气体传感器中有希望的识别元件的兴趣越来越大。mips作为一种用于感测分析物的领先技术,在不存在合适的生物感受器的情况下,通常在人工传感中使用,可以根据挥发性生物标志物的检测来应用于早期疾病诊断等关键领域。对各种疾病的早期,无创发现和对健康状况的自我监控的需求很大。在护理点模式下对生物标志物的检测仍然具有挑战性,并且受到各种因素的限制。因此,由于其成本相对较低,非侵入性抽样方法和快速检测能力,呼吸分析在医疗保健中受到了极大的关注。在本综述中,对基于MIP的传感器的最新发展及其在疾病诊断方面的效用是对疾病诊断的。此外,基于MIP传感器的挑战和观点得到了详细说明,以期介绍市场和成功的商业化。
摘要:在这项研究中,使用Dibutyl邻苯二甲酸酯(DBP)制备了一种具有金属有机骨架(Fe 3 O 4 @MOF)载体的新型磁性分子印记的聚合物材料(Fe 3 O 4 @Mof @Mip-160)。该材料可用于食物中痕量的邻苯二甲酸酯(PAE)的有效,快速和选择性提取,并可以通过气相色谱 - 质谱法(GC-MS)检测它们。优化了材料的合成条件,以制备具有最高吸附性能的Fe 3 O 4 @MOF @MIP160。透射电子(TEM),傅立叶变换红外光谱(FT-IR),振动样品磁(VSM)和Brunauer – Emmett – Teller(BET)方法用于表征材料。与Fe 3 O 4 @MOF和磁性未印刷的聚合材料(Fe 3 O 4 @Mof @nip),Fe 3 O 4 @Mof @MIP @MIP-160具有轻松且快速地操纵磁性磁性的优势聚合物。Fe 3 O 4 @MOF@MIP-160 has good recognition and adsorption capacity for di-butyl phthalate (DBP) and diethylhexyl phtha- late (DEHP): the adsorption capacity for DBP and DEHP is 260 mg · g − 1 and 240.2 mg · g − 1 , and the adsorption rate is fast (reaching equilibrium in about 20最小)。此外,与传统的固相提取材料相比,Fe 3 O 4 @MOF @MIP160可以回收六次,使其具有成本效益,易于操作和节省时间。这证明了Fe 3 O 4 @Mof @MIP160适合从食物矩阵中检测和删除PAE。分析了饮用水,果汁和白葡萄酒中邻苯二甲酸酯的含量,回收率范围从70.3%到100.7%。
摘要 印记的 Dlk1-Dio3 结构域包含发育基因 Dlk1 和 Rtl1 ,它们在不同细胞类型的母体染色体上处于沉默状态。在该亲本染色体上,该结构域的印记控制区激活多顺反子,从而产生 lncRNA Meg3 和许多 miRNA( Mirg )和 C / D-box snoRNA( Rian )。尽管 Meg3 lncRNA 位于核内并与母体染色体相关,但它是否控制顺式基因抑制尚不清楚。我们创建了携带异位 poly(A) 信号的小鼠胚胎干细胞 (mESC),从而降低了多顺反子上的 RNA 水平,并产生了 Rian − / − mESC。在 ESC 分化后,我们发现 Meg3 lncRNA(而不是 Rian )是母体染色体上 Dlk1 抑制所必需的。通过 CRISPR 介导的父系 Meg3 启动子去甲基化获得的双等位基因 Meg3 表达导致双等位基因 Dlk1 抑制,并导致 Rtl1 表达丧失。lncRNA 表达还与 Meg3 5′ 侧的 DNA 低甲基化和 CTCF 结合相关。使用 Capture Hi-C,我们发现这会产生拓扑关联域 (TAD) 组织,使 Meg3 靠近母系染色体上的 Dlk1。Meg3 对基因抑制和 TAD 结构的需要可能解释了人类 DLK1-DIO3 基因座处异常的 MEG3 表达如何与印记障碍相关。
慢性肾病 (CKD) 是影响人群的最严重的非传染性疾病之一。早期患者没有明显症状,直到发展为危及生命的终末期肾衰竭。因此,早期诊断 CKD 非常重要,以便进行治疗干预和进展监测。本文报道了一种即时诊断 (POC) 传感平台,使用采用新型表面分子印迹技术制备的还原氧化石墨烯/聚多巴胺分子印迹聚合物 (rGO/PDA-MIP),可同时检测三种 CKD 生物标志物,即肌酐、尿素和人血清白蛋白 (HSA)。开发了一种具有差分脉冲伏安法 (DPV) 功能的多通道电化学 POC 读出系统,结合表面 MIP 电极,可同时检测这三种生物标志物。该传感平台对所有三种分析物的检测限 (LoD) 均达到创纪录的飞摩尔水平,检测范围广,涵盖了它们的生理浓度。通过测量健康对照者和 CKD 患者的血清和尿液中的这些分析物进行临床验证。与医院获得的结果相比,平均回收率为 81.8–119.1%,而该平台更具成本效益、用户友好性,并且需要的样本到结果时间更短,显示出在资源有限的环境中部署用于早期诊断和跟踪 CKD 进展的潜力。
慢性肾脏疾病(CKD)是影响人群的最严重的非传染性疾病之一。在早期患者中没有明显的症状,直到威胁生命的前末期肾衰竭。因此,重要的是早期诊断CKD允许治疗干预和进展监测。在这里,使用氧化石墨烯/多胺 - - 胺 - - 胺 - 莫利 - - 甲基 - 甲基化的石墨烯/多胺 - 甲基化的成分(RGO/PDA-MIP)(RGO/PDA-MIP)制造技术,据报道了三种CKD生物标记物(即肌酐,尿素和人血清白蛋白(HSA))同时检测三种CKD生物标志物(即肌酐,尿素和人血清白蛋白(HSA))(RGO/PDA-MIP)制造新颖的新颖的表面构造。开发了具有不同脉冲伏安法(DPV)功能的多通道电化学POC读数系统,允许同时检测三个生物标志物,并结合表面MIP电极。这个传感平台在所有三个分析物中都以femtolor级别的水平达到了创纪录的低检测(LOD),其广泛检测范围涵盖了其生理浓度。临床验证是通过测量健康对照组和CKD患者的血清和尿液中的这些分析物来进行的。与医院获得的结果相比,平均恢复率为81.8–119.1%,而该平台更有效率,用户友好,需要更少的样品到分配时间,表明在资源限制的设置中以早期诊断和跟踪CKD的进展。
分子印刷聚合物(MIP)等效于天然抗体,已被广泛用作检测疾病生物标志物的合成受体。受益于其出色的化学和物理稳定性,低成本,相对易于生产,可重用性和高选择性,基于MIP的电化学传感器对疾病诊断引起了极大的兴趣,并且比其他生物敏技术表现出优势。在这里,我们将各种基于MIP的电化学传感器与不同的工作PRIN平方进行比较。然后,我们评估了基于MIP的电化学传感器的最新成就,用于检测不同的生物标志物,包括核酸,蛋白质,糖,糖,脂质和其他小摩尔轴。与潜在的解决方案一起概述了限制,以防止其成功翻译成实际的临床环境。最后,我们以对这项有希望的生物传感技术的未来前景来分享基于MIP的电动化学传感器的演变的愿景。
摘要:在传感技术的领域中,传感器的吸引力在于其特殊的检测能力,高选择性,灵敏度,成本效益和最少的样本使用情况。值得注意的是,基于分子的印迹聚合物(MIP)传感器已成为从临床到环境应用的兴趣点。这些传感器为快速,选择性,可重复使用和实时筛选的各种分子提供了有希望的途径。用于制定各种聚合物格式的制备技术,从微粒到纳米材料,具有深远的影响。这些技术显着影响简化的传感系统的组装,表现出与其他技术的显着兼容性。此外,他们准备在实现下一代平台的实现中发挥关键作用,从而简化了针对各种目标量身定制的传感系统的制造。本综述是一种全面的探索,为传感器,分子烙印方法以及基于MIP的传感器的新兴域提供简洁的见解及其应用。探讨了最近的进步,这篇评论提供了一个基于印刷粒子和凝胶传感器的进步的详细摘要,从而阐明了新型传感系统的创建。此外,对不同应用的各种类型的基于MIP的传感器的独特性能进行了详尽的研究,丰富了对它们多功能性的理解。在总结部分中,本综述突出了有关针对各种分子的基于MIP的传感器的最新研究的最新实验。通过封装当前的研究状态,这项综述是一种宝贵的资源,提供了基于MIP的传感器开发的动态景观的快照及其对多样化科学和技术领域的潜在影响。
在哺乳动物卵母细胞中建立适当的DNA甲基化景观对于母体的印记和胚胎发育很重要。de de dNA甲基化,该DNA甲基转移酶DNMT3A具有ATRX-DNMT3-DNMT3L(ADD)结构域,该域与组蛋白H3尾巴相互作用,在赖氨酸-4处未甲基化的组蛋白H3尾部(H3K4ME0)。该结构域通常通过分子内相互作用阻止甲基转移酶结构域,并与组蛋白H3K4me0结合释放自身抑制。然而,H3K4ME0在染色质中广泛存在,并且添加 - 固定相互作用的作用尚未在体内研究。我们在此表明,小鼠DNMT3A的添加域中的氨基酸取代会导致矮人。卵母细胞显示CG甲基化的镶嵌性丧失和几乎完全的非CG甲基化丧失。源自此类卵母细胞的胚胎在中胎妊娠中死亡,并在印记控制区域内具有随机,通常是全或无人类型的CG-甲基化损失,并且链接基因的misexpression。随机损失是一个两步的过程,在裂解阶段胚胎中发生损失,并在植入后重新恢复。这些结果突出了添加域在有效且可能是过程中,从头甲基化和构成一种模型,是生殖细胞中表观遗传扰动对下一代的随机遗传的模型。
摘要背景。在过敏的诊断工作中,确定过敏原特异性免疫球蛋白E(IgE)对于诊断,预后和治疗选择很重要。这项研究的目的是评估免疫印迹测定法(欧洲)在检测针对蒂莫西草和桦木花粉过敏蛋白成分的IgE抗体中与氟化酶测定(Immunocap,Phadia 250)相比。方法。分析了来自患者对蒂莫西草和桦木花粉的128种血清样品。使用Euroline DPA-DX花粉1和ImmunoCap测定法测量了对提摩太草和桦木花粉的IgE抗体水平。然后,在二进制(正vs负),半定量(IgE类)和定量(浓度)水平上比较两种方法。还将两种方法与皮肤刺测试的结果进行了比较。结果。与IM-MUNOCAP相比,欧洲方法的正百分比为93%,年龄为94%,总准确度为94%。kappa分析表明,在确定测试的7/11组件的IgE类别中,方法之间的一致性中等强度。使用Spearman的等级相关性分析时,所有组件均显示出正相关。结论。总体而言,我们发现欧洲和免疫方法在测量IgE敏化方面存在良好的相关性。
南方印迹和北方印迹都是将核酸转移到膜上的分子生物学技术,随后通过杂交程序检测特定的核酸序列。南方印迹用于识别特定的 DNA 序列,例如找出生物体中存在多少个特定基因的拷贝,而北方印迹用于比较不同生物体之间的 mRNA 池。由于 RNAseq、微阵列和 RT-PCR 现在是分析物种间 mRNA 池的常用方法,有时也更灵敏,因此北方印迹现在不太常用。另一方面,南方印迹仍然是一种非常流行的方法,因为与 PCR 相比,它还可用于识别直系同源或旁系同源基因、外来基因的部分插入或基因组内特定基因的拷贝数,因为只需要知道基因的基本序列,而不需要知道特定的引物结合位点。由于如今很少进行北方印迹实验,因此本信息手册将主要关注南方印迹实验。