呼吸道传染性空气传播疾病,如流感、H1N1、严重急性呼吸道综合征 (SARS) 和 COVID-19 在飞机客舱等封闭环境内的传播一直是一个有待研究的课题,因为感染某种疾病的乘客在说话、咳嗽或打喷嚏时产生的呼吸道飞沫会对其他乘客造成有害影响。它们能够在短时间内飞翔并悬浮在周围的空气中或降落在乘客或表面上。这项工作介绍了对宽体飞机客舱部分中移动乘客以不同速度产生的咳嗽和打喷嚏飞沫的气流行为的研究结果。此外,它比较了不同流速和速度的传播,以显示这些疾病如何从移动和站立的乘客传播给其他乘客。该数值模拟使用计算流体动力学 (CFD) 建模模拟。结果表明,移动乘客产生的咳嗽和打喷嚏飞沫的气流可以到达坐着的乘客;但喷嚏飞沫的危害性比咳嗽飞沫更大,而且两者都能在机舱内传播很长的距离。此外,当比较乘客移动和静止时飞沫扩散范围时,发现乘客移动得越快,飞沫传播得越远。
在一次协调一致的全球行动中,人们使用 DDT 和其他有机氯强力抑制疟蚊媒介。当时,许多人希望传播疟疾的蚊子数量会减少到如此低的水平,从而从全球大部分地区根除这种致命疾病。后来,针对这些媒介的计划失去了效力,疟疾再次大规模复发。同样,在非洲,采采蝇和牲畜及人类锥虫病的防治工作也失败了。热带果蝇毁坏水果和蔬菜,是发展中国家向一些工业化国家市场出口的严重障碍。一些主要的果蝇害虫已经蔓延到其他大陆,随着国际旅行的不断增加,它们甚至可能蔓延得更广。蝗虫和其他蝗虫不时地破坏非洲、中东和亚洲的农作物。令人生畏的棉铃象鼻虫已经蔓延到巴西的棉花种植区,造成了广泛的经济损失。六百多种昆虫已经对杀虫剂产生了抗药性,而杀虫剂仍然是防治它们的主要武器。随着旧杀虫剂被合成除虫菊酯取代,某些昆虫害虫(如粉虱)的危害性有所增加,合成除虫菊酯会消灭一些天敌,而这些天敌迄今为止一直能有效地控制这些害虫。
民航是连接世界和支持全球经济增长的重要交通网络。为了在实现环境目标的同时保持这些优势,下一代飞机必须大幅减少对气候的影响。氢动力飞机有可能在现有航线上不排放碳并减少或消除其他排放。本文是一份全面的氢动力飞机指南,解释了基本物理原理并回顾了当前的技术。我们讨论了这些技术对飞机设计、成本、认证和环境的影响。从长远来看,氢动力飞机似乎是当今煤油动力飞机最引人注目的替代品。使用氢气还可以实现燃料电池和超导电子等新技术,这可能导致使用煤油无法实现的飞机概念。氢动力飞机在技术上是可行的,但需要大量的研究和开发。轻型液氢罐及其与机身的集成是关键技术之一。燃料电池可以消除飞行中的排放,但必须变得更轻、更强大、更耐用,才能使大型燃料电池驱动的运输飞机成为可能。氢动力涡轮风扇发动机已经具备了这些理想的特性,但会产生一些排放,尽管其危害性远低于煤油涡轮风扇发动机。除了机身和推进技术外,氢动力飞机的可行性还取决于低成本的绿色氢气生产,而这需要对能源基础设施进行大量投资。
工程师始终需要考虑组件故障对其设计的系统和结构的影响。然而,直到 20 世纪 60 年代早期,航空航天业对安全性和可靠性的要求开始明显,才开发出用于此类分析的正式方法(参考文献 2.3.1)。20 世纪 60 年代末,一些专业协会开始发布执行故障模式和影响分析 (FMEA) 的程序。其中最早的之一是汽车工程师协会的航空航天推荐做法 ARP926,“故障/故障分析程序”(参考文献 2.1.1),于 1967 年发布。1974 年,MIL-STD-1629(船舶)“执行故障模式、影响和危害性分析的程序”(参考文献 2.2.2)发布,经过多次修订,确立了分析系统的基本方法。到 20 世纪 80 年代,FMEA 已成为设计流程的标准组成部分——至少在航空航天业是如此。1988 年,福特汽车公司出版了《设计中的潜在故障模式和影响分析(设计 FMEA)和制造和装配过程中的潜在故障模式和影响分析(过程 FMEA)指导手册》(参考文献 2.3.7),将该方法应用于制造流程以及产品设计。该程序专注于汽车行业的特殊需求,并结合美国主要汽车制造公司及其供应商的意见,演变为 SAE 地面车辆推荐
研究人员和公共卫生官员将美国 COVID-19 疫苗接种率低归因于社交媒体上传播的虚假信息。为了评估这一说法,我们引入了一个新颖的泛化框架,结合实验室实验、众包和机器学习,以估计在疫苗首次推出期间在 Facebook 上分享的 13,206 个与疫苗相关的 URL 对疫苗接种意愿的因果影响。我们的模型预测,表达对疫苗安全性怀疑的内容使每位美国 Facebook 用户的疫苗接种意愿降低约 -2.33 个百分点(95% QI:-2.28,-.328)。令人惊讶的是,未被事实核查人员标记但对疫苗持怀疑态度的内容(主要是主流媒体文章,它们有选择地报道接种疫苗后的死亡事件)的总体影响力是彻头彻尾的虚假信息的 50 倍。尽管我们的实验室实验和模型都表明,在浏览时,虚假信息的危害性远远大于事实准确的内容,但对疫苗持怀疑态度的主流媒体内容在 Facebook 上的浏览量远远高于虚假信息。虽然我们的研究表明限制错误信息的传播具有重要的公共卫生益处,但它也凸显了主流媒体发布的事实准确但仍具有误导性的内容可能带来的有害影响。
DROSHA 编码的核糖核酸酶是微处理器复合体的亚基,参与微小 RNA(miRNA)生物发生的第一步。到目前为止,DROSHA 尚未与孟德尔疾病相关联。在这里,我们描述了两个患有严重智力障碍、癫痫、白质萎缩、小头畸形和畸形特征的个体,他们携带有害的 DROSHA 从头杂合变异。DROSHA 受限于错义变异,并且对功能丧失有中等程度的不耐受性(o/e = 0.24)。果蝇直系同源物 drosha 的缺失会导致三龄幼虫发育停滞和死亡,脑尺寸严重缩小,幼虫成虫盘丢失。眼克隆中 drosha 的缺失会导致成年果蝇的眼睛小而粗糙。已识别的 DROSHA 变体之一 (p.Asp1219Gly) 在果蝇中表现为强烈的功能丧失等位基因,而另一个变体 (p.Arg1342Trp) 在我们的检测中危害较小。在线虫中,在相当于线虫的残基处模拟 p.Asp1219Gly 变体的敲入会导致 miRNA 表达丧失和异时性,这是 miRNA 丧失的一种表型特征。总之,我们的数据显示,根据模型生物的功能研究,本文所述个体中发现的 DROSHA 变体具有危害性,并且可能是涉及神经系统的严重表型的根本原因。
1. AIT:组装、集成和测试 2. AO:机会公告 3. AoA:公司章程 4. BBIU:重新投入使用 5. BIU:投入使用 6. BSS:广播卫星服务 7. BW:带宽 8. CDR:关键设计审查 9. CIN:公司识别码 10. COLA:防撞分析 11. COMINT:通信情报 12. CPSE:中央公共部门企业 13. DoS:空间部 14. DoT:电信部 15. DPIIT:工业和国内贸易促进部 16. DSM:数字表面模型 17. DST:科学技术部 18. DTM:数字地形模型 19. EIRP:有效/等效全向辐射功率 20. ELINT:电子情报 21. EO:地球观测 22. FDI:外国直接投资 23. FMECA:故障模式、影响和危害性分析 24. FSS:固定卫星服务 25. G/T:噪声温度增益 26. GSD:地面采样距离 27. GSO:地球静止轨道 28. GSTIN:商品及服务税识别号 29. HEO:高椭圆轨道 30. IARU:国际业余无线电联盟 31. IDP:IN-SPACe 数字平台(www.inspace.gov.in) 32. IEC:进出口代码 33. IN-SPACe:印度国家空间促进与授权中心 34. ISP:印度空间政策 35. ISRO : 印度空间研究组织 36. IST : 综合卫星测试
可靠性 (R) 11 可维护性 (M) 17 可测试性 (T) 20 • 定制 R&M 任务要求 23 R&M 任务应用/优先级 25 制定合同数据要求列表 26 • 指定要包含在提案中的信息 28 评估承包商提案 31 指定零件应力降额 37 确定常见冷却技术的局限性 44 了解基本零件控制 46 确定设计评审中评估的关键 R&M&T 主题 55 评估承包商管理关键项目的方法 62 了解与休眠条件相关的设计问题 63 了解基本的 SMT 设计问题 66 评估电源可靠性 67 确定零件故障模式和机制 69 评估光纤可靠性 73 了解 R&M&T 分析类型和目的 77 了解可靠性预测方法 80 了解可维护性预测方法 81理解可测试性分析方法 84 评估可靠性预测报告 85 评估现有可靠性数据 86 评估可维护性/可测试性分析报告 87 评估故障模式、影响和危害性分析报告 88 估算冗余配置的可靠性 89 执行快速(零件计数)可靠性预测 92 调整不同条件下的可靠性数据 105 • 预测 SMT 设计的可靠性 108 理解有限元分析应用 113 估计常用冷却技术的 IC 结温 115 理解潜伏电路分析应用 119
1.1 目标和政策 ...........................................1-1 1.1.1 目标 ...。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.......1-1 1.1.2 AFMC 职责 .............。。。。。。。。。。。。。。。。。。。。。。。。..........1-1 1.1.3 各主要司令部和其他机构的职责 ............。。。。。。。。。。。。。。。。。。。。1-1 1.1.4 维修站维护需求生成。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-1 1.1.5 现场团队维修站维护。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-1 1.1.6 工作包和进度表。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-1 1.1.7 培训设备。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-1 1.1.8 蚕食标准。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-1 1.1.9 物流需求确定。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-2 1.2 术语定义.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-2 1.2.1 飞机结构完整性计划(ASIP)(MIL-STD 1530C)。。。。。。。。。。。。。。。。。。。。。1-2 1.2.2 分析条件检查(ACI) AFMCI 21-102。 。。。。。。。。。。。。。。。............1-2 1.2.3 机身状况评估(ACE)。...........。。。。。。。。。。。。。。。。。。。。。。。。....1-2 1.2.4 受控间隔扩展 (CIE) AFMCI 21-104 ...........................1-2 1.2.5 仓库设施或修理活动来源 ...........。。。。。。。。。。。。。。。。。。。。。。。。.1-2 1.2.6 仓库野战队。...................。。。。。。。。。。。。。。。。。。。。。。。。........1-2 1.2.7 站级维护 .....。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-2 1.2.8 例外飞机.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-2 1.2.9 故障模式、影响和危害性分析(FMECA) .。。。。。。。。。。。。。。。。。。。。。。。。1-2 1.2.10 项目管理器(IM)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-2 1.2.11 飞机与导弹要求(AMR)审查。。。。。。。。。。。。。。。。。。。。。。。。。。。。..1-2 1.2.12 维护计划开发文档 (MPDD) ..< div> 。。。。。。。。。。。。。。。 < /div>........... div>1-3 1.2.13 程序化要求 ...........。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . . . . . . 1-3 1.2.14 状态维护(OCM) . . . . . . . . . . . . . div> . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 1-3 1.2.15 产品组经理 (PGM) . . . . 。 。 。 。 。 。 。 。 . . . . . . div> . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。......1-3 1.2.14 状态维护(OCM) ............. div>.....。。。。。。。。。。。。。。。。。。。。。。。。1-3 1.2.15 产品组经理 (PGM) ....。 。 。 。 。 。 。 。 . . . . . . div> . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。。。。。。。。。...... div>.....。。。。。。。。。。。。。........1-3 1.2.16 以可靠性为中心的维护 AFMCI 21-103 ...............................1-3 1.2.17 以可靠性为中心的维护分析 AFMCI 21-103 .....。。。。。。。。。。。。。。。。。。。。。1-3 1.2.18 修改。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。......1-3 1.2.19 计划维修 (PDM) ....................................1-3 1.2.20 分段工作需求包。.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-3 1.2.21 单一管理器 (SM) 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-3 1.2.22 修复源 (SOR) 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-3 1.2.23 速度线 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-3 1.2.24 项目经理 (PM)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-3 1.2.25 技术维修中心(TRC) .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-3 1.2.26 训练设备.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-3 1.2.27 飞行安全(SOF) .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...........1-3 1.2.28 未编程要求 ............。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-4
阿尔茨海默病 (AD) 是一种神经退行性疾病,会导致记忆力、思维能力和社交能力逐渐下降。1 目前,尚无针对这种疾病的疾病改良疗法,这是我们这个时代最具挑战性的医疗保健问题之一。阿尔茨海默病的疾病改良治疗策略的发现仍然是正在进行的研究课题。2 随着全球人口不断老龄化,阿尔茨海默病 (AD) 的患病率稳步上升,这凸显了开发能够减缓或阻止疾病进展的疾病改良疗法的必要性。3 AD 的发病机制以多种途径和过程的参与为特征。其中一条途径是乙酰胆碱酯酶 (AChE) 途径,它导致神经元通讯逐渐丧失。4 在阿尔茨海默病进展中,由于胆碱能神经元退化导致乙酰胆碱水平下降,导致认知障碍。 5 乙酰胆碱可用性降低会破坏突触传递,随着时间的推移加剧记忆力减退和认知能力下降。6 由于海马体中乙酰胆碱 (ACh) 活性降低,记忆力减退被认为是胆碱能神经元退化所致。大脑表现出严重的 AChE 通路失调,这是 AD 的典型特征。AChE 是一种分解代谢酶,可导致大脑中 ACh 的分解,也被认为是 AD 的一种改善病情的治疗策略。7,8 已开发并批准了几种用于治疗 AD 症状的药物,包括他克林、多奈哌齐、利凡斯的明和加兰他敏。然而,它们有多种副作用,包括晕厥、恶心、呕吐、癫痫、头晕和腹泻。 9 药用植物通过次级代谢产生种类繁多的初级和次级化合物,因此其化学多样性比其他具有药理活性的天然来源更大。 10 研究人员对研究传统药用植物、其成分甚至其混合物以开发治疗疾病的药物表现出浓厚的兴趣。 11 其中的化学成分被用于开发药物,因为它们的危害性比合成化学药物要小。 12