Casgevy 是一种自体基因组编辑的造血干细胞基因疗法,适用于治疗 12 岁及以上的镰状细胞病 (SCD) 患者,这些患者患有复发性血管闭塞性危象 (VOC),或输血依赖性 β-地中海贫血 (TDT)。Casgevy 输注后,编辑后的 CD34+ 细胞植入骨髓并分化为 BCL11A 表达降低的红细胞系细胞。这可防止红细胞镰状化并解决疾病的根本原因,从而消除 VOC。在 β-地中海贫血中,BCL11A 表达降低会增加 γ-珠蛋白的产生,从而改善 α-珠蛋白与非 α-珠蛋白的不平衡,从而减少无效红细胞生成和溶血并提高总血红蛋白水平,消除对常规红细胞 (RBC) 输血的依赖。 SCD 是由β珠蛋白基因的遗传突变引起的,导致异常血红蛋白,称为镰状血红蛋白 (HbS)。红细胞变得僵硬,发生过早溶血导致贫血,并且无法将氧气输送到重要器官。患者会因血管阻塞危机而感到剧烈疼痛。镰状细胞病的一线疗法是羟基脲。β-地中海贫血是一种罕见的血液疾病,由β珠蛋白 (HBB) 基因突变引起,导致功能性成人血红蛋白 (HbA) 生成缺失 (β0) 或减少 (β+),阻碍红细胞发育和存活(无效红细胞生成),导致小细胞性贫血、铁过载和其他并发症。受影响最严重的患者终生依赖红细胞输血并需要铁螯合。 CLIMB THAL-111 试验的中期分析显示,91.4% 的患者实现了至少 12 个月的输血独立性这一主要终点。Casgevy(exagamglogene autotemcel)在满足以下条件时将考虑纳入承保范围:
摘要 CRISPR 是一种基因修饰工具,前景十分光明,尤其是在生物技术和医学领域。CTX001 是一种自体基因修饰干细胞,其工作原理是允许和促成高水平胎儿血红蛋白的产生。这是一种 CRISPR 疗法,用于治疗血红蛋白病或导致血红蛋白结构异常的疾病,包括镰状细胞病,这是一种遗传性疾病,会产生新月形红细胞,从而导致可怕的后果,可能非常痛苦甚至危及生命。目前,这种疗法正在接受治疗镰状细胞病和输血依赖性β-地中海贫血 (TDT)(另一种遗传性血液疾病)的试验,正在观察和分析进一步的结果和数据。本研究论文的目的是理解和认识 CTX001 的价值及其在治疗镰状细胞病方面的重要性,并提供参与该 CRISPR 治疗临床试验的患者的数据和实例,提供有关 CTX001 对疾病以及更重要的是对他们的生活的影响的信息。回顾了两名患者,提供了个人经历等不同方面的详细信息以及更科学的数据导向分析。以这些患者为主要例子发现,到目前为止,这种治疗方法仍然非常成功,将胎儿血红蛋白的产生率提高了 40%,并为镰状细胞病患者提供了越来越多无法想象的机会,包括没有血管闭塞危机发作以及消除输血的必要性,从而使生活越来越没有痛苦。关键词:CRISPR、CTX001、镰状细胞病、血管闭塞性发作/VOC/血管闭塞性危象、胎儿血红蛋白 CRISPR 是治疗镰状细胞病(一种困扰世界的衰弱性疾病)的解决方案吗?
背景 Casgevy (exagamglogene autotemcel) 是一种细胞基因疗法,由自体 CD34 + 造血干细胞 (HSC) 组成,通过 CRISPR/Cas9 技术在 BCL11A 基因的红细胞特异性增强子区域进行编辑,以降低红细胞系细胞中的 BCL11A 表达,从而增加胎儿血红蛋白 (HbF) 蛋白质的产生。Casgevy 由患者自身的 HSC 制备而成,这些 HSC 是通过血液分离程序获得的。自体细胞富含 CD34 + 细胞,然后通过电穿孔引入 CRISPR/Cas9 核糖核蛋白 (RNP) 复合物进行体外基因组编辑。RNP 复合物中包含的向导 RNA 使 CRISPR/Cas9 能够在 BCL11A 基因的红细胞特异性增强子区域的关键转录因子结合位点 (GATA1) 处精确地断裂 DNA 双链。编辑的结果是,GATA1 结合被破坏,BCL11A 表达降低。这种减少反过来导致伽马珠蛋白表达增加和下游胎儿血红蛋白形成 (1)。Casgevy 输注后,编辑后的 CD34 + 细胞植入骨髓并分化为 BCL11A 表达降低的红细胞谱系细胞。BCL11A 表达降低导致红细胞中 γ 珠蛋白表达和 HbF 蛋白产生增加。在患有严重镰状细胞病的患者中,HbF 表达可降低细胞内血红蛋白 S (HbS) 浓度,防止红细胞镰状化并解决疾病的根本原因,从而消除血管闭塞性危象 (VOC)。在患有输血依赖性 β-地中海贫血的患者中,γ-珠蛋白的产生可改善 α-珠蛋白与非 α-珠蛋白的不平衡,从而减少无效红细胞生成和溶血并增加总血红蛋白
患者 4 于 2014 年被诊断为 III 期 CRC。他接受了 6 个月的 CAPOX 治疗,并且大约 1 年没有进食。CAPOX 引起了严重的恶心和手足综合征。在常规随访中,发现腹膜复发,患者被诊断为 IV 期疾病。他接受了 CRS- HIPEC 和手术以切除乙状结肠复发,导致临时造口术。2017 年初,患者接受了 3 个月的二线化疗 - FOLFIRI。他几个月没有进食,直到他注意到右腿疼痛。扫描显示结肠、肝脏、肺、骨骼和腹膜出现明显复发。他无法行走和参与许多日常任务。患者参加了临床试验并接受了派姆单抗和比尼替尼治疗,但由于对后者的严重反应,不得不退出试验。 2018 年末,患者接受了 Lonsurf 治疗,但由于严重的不良反应,不得不停止服用该药物。患者最终前往美国进行第二意见咨询,并接受了 ipilimumab-nivolumab 的标签外治疗。患者经历了剧烈疼痛,停用 ipilimumab,并被开具强效阿片类药物。最终,疼痛开始好转,在下一次扫描时,医疗团队表示肿瘤到处都在缩小。最终,他不得不停止服用 nivolumab,因为他出现了肾上腺危象。2021 年,患者接受了全结肠切除术,并进行了永久性造口术。从那时起直到今天,扫描显示他没有出现任何异常。患者目前患有慢性神经病变、永久性造口术以及阿片类药物使用的长期副作用,包括睡眠障碍。此外,为了获得额外的治疗选择,患者自掏腰包花费了 20 万至 25 万美元,这凸显了一旦加拿大的标准治疗方案用尽,获得额外的治疗选择的成本极高。
自首次描述以来,镰状细胞病 (SCD) 一直是临床医生试图帮助患者忍受这种可怕疾病后果的治疗挑战。这种终身疾病从第一次危机开始,就以改变患者生理环境的过程开始。在慢性贫血的情况下,这些过程可能导致神经症状恶化和器官损伤,这是那些患有频繁和复发性血管闭塞危机的患者的特征。因此,很明显,降低血红蛋白 S 水平造成的负面影响确实是改善患者长期前景的最佳方法。主要治疗方法是为 SCD 患者提供长期输血支持。然而,许多患者无法忍受已知的伴随螯合疗法的不良事件,而螯合疗法需要减少长期输血造成的铁负荷。我们介绍了各种与 SCD 相关的主题,描述了治疗这种疾病的概念和进展。大多数 SCD 患者从儿童时期就表现出这种疾病的症状和并发症。考虑到这一点,本期刊登了一项来自法属圭亚那的大型研究,该研究描述了儿科患者随时间推移的并发症发病率和类型,并确定了急性胸部综合征和缺血性中风等并发症的发病率(Gargot 等人)。重要的是,尽管这些数据表明缺血性中风的风险低至 3.1%,但到患者进入青少年时期,这一风险却翻了一番。这些数据强调,SCD 患者的治疗方法应侧重于儿童早期的针对性干预,以减少并发症。对于诊断和检测,本期还重新讨论了 SCD 患者的红细胞和网织红细胞计数作为血管闭塞性危象的预测指标(Feugray 等人)。本研究的作者建议使用全血细胞计数获得的网织红细胞参数。具体而言,较高的网织红细胞计数与较高的中等网织红细胞荧光相结合对预测迫在眉睫的危机具有最高的灵敏度和特异性(分别为 81% 和 88%)。
祝贺世界首个通过 CRISPR 介导的基因编辑治疗镰状细胞病的基因疗法获得批准 亲爱的编辑, CRISPR 作为一项新兴尖端技术,在过去十年中因其在治疗各种遗传疾病方面的潜力而备受关注。最近,这一前景随着 CASGEVY 的突破性批准而成为现实,CASGEVY 是一种基于 CRISPR 的基因疗法,由美国生物制药公司 Vertex Pharmaceuticals Incorporated 和瑞士-美国生物技术公司 CRISPR Therapeutics 共同开发,由诺贝尔奖获得者 Emmanuelle Charpentier 教授共同资助。CASGEVY(exagamglogene autotemcel)是一种一次性治疗细胞基因疗法。该药物旨在治疗 (i) 患有复发性血管闭塞危象 (VOC) 的 12 岁及以上患者的镰状细胞病或 (ii) 患有输血依赖性 β-地中海贫血且适合进行造血干细胞 (HSC) 移植但缺乏合适的人类白细胞抗原匹配相关移植供体的患者的疾病 (1)。镰状细胞病和 β-地中海贫血源于 HBB 基因内的基因突变,该基因负责编码血红蛋白 A (HbA) 的 β-珠蛋白亚基,血红蛋白 A 是成人红细胞 (RBC) 中的主要携氧蛋白。在患有镰状细胞病的个体中,HBB 突变会导致产生异常的血红蛋白分子,即血红蛋白 S (HbS)。这些细胞的镰状形状是有问题的,因为它降低了它们的灵活性,使它们更容易卡在小血管中,导致疼痛和其他并发症 (2)。另一方面,在 β-地中海贫血中,HBB 基因突变导致 β-珠蛋白亚基生成减少或缺失。这导致 α-和 β-珠蛋白链生成失衡,从而导致血红蛋白形成异常。β-珠蛋白链不足或缺失会阻碍血红蛋白的正常功能,导致氧气运输无效,从而导致贫血 (3)。在 CASGEVY 开发之前,这些疾病唯一可用的治疗方法是将健康的 HSC 从供体移植到患者体内。然而,这种程序具有很大的风险,包括可能危及生命的移植物抗宿主病。此外,只有大约 10% 的受该疾病影响的患者有组织相容的兄弟姐妹供体,因此大多数患者无法获得治愈 (4)。
2019 冠状病毒病 (COVID-19) 已在全球迅速蔓延。自 2020 年爆发以来,这种毁灭性的病毒感染已感染约 6.3 亿人,死亡人数超过 650 万。快速提供安全有效的疫苗是控制 COVID-19 大流行最有希望的策略。全球已就 COVID-19 疫苗接种达成共识。自 2020 年 12 月启动首个大规模疫苗接种计划以来,全球约 64% 的人口已接种两剂 COVID-19 疫苗(截至 2022 年 10 月 30 日更新:我们的数据世界:https://ourworldindata.org)。虽然 COVID-19 疫苗的安全性也在临床试验中得到明确,但一些免疫功能低下的患者,如重症肌无力 (MG) 患者,仍然存在疫苗犹豫 (1,2)。这些免疫功能低下患者犹豫接种疫苗的主要原因是担心疫苗相关症状加剧。重症肌无力是一种典型的自身免疫性疾病,由神经肌肉接头处的特定自身抗体引起,CD4 + T 细胞和 B 细胞在其中发挥重要作用。研究表明,疫苗可通过产生中和抗体引发强烈的体液反应,以及通过诱导功能性和促炎性 CD4 + 和 CD8 + T 细胞以及 Th1 细胞因子的表达引发强烈的细胞反应,理论上会加重自身免疫性疾病患者的症状 ( 3 )。鉴于大多数重症肌无力患者都在接受免疫抑制或免疫调节疗法,因此理论上人们还担心,重症肌无力患者感染 COVID-19 的风险可能高于健康人,甚至出现重症 COVID-19 表现。因此,应优先为他们接种 COVID-19 疫苗。然而,迄今为止尚无随机对照试验来确认 COVID-19 疫苗对 MG 患者的安全性。现有研究中存在争议的报告。接种 COVID-19 疫苗后,已有自身免疫性疾病加重或新发自身免疫性疾病的报道(4、5)。例如,Watad 等人报道,两例 MG 患者在接种疫苗后出现肌无力危象并接受了机械通气(6),而在随后的几项研究中,证实 COVID-19 疫苗对 MG 患者是安全的(7-10)。仅报告了少数与疫苗相关的病情加重,但症状非常轻微,不需要额外治疗。由于采用单臂设计和缺乏控制,这些研究未能确定疾病风险
NC CAH 可能要到以后才能发现,而更严重的单纯男性化 (SV) 和 SW CAH 则可通过新生儿筛查计划发现,这是新生儿时期经历肾上腺危象或女性男性化的结果(4,7)。早在宫内,皮质醇缺乏就会导致下丘脑-垂体-肾上腺 (HPA) 轴负反馈减弱或完全缺失,从而导致促肾上腺皮质激素 (ACTH) 过量产生。过量的 ACTH 被分流到肾上腺皮质中的雄激素生成途径,从而导致脱氢表雄酮和其他肾上腺雄激素的过量产生(8,9,10)。在胎儿期,外生殖器在妊娠第 7 周左右开始发育,女性需要通过皮质醇抑制肾上腺雄激素,以确保女性性发育并防止生殖器男性化。换句话说,过高的雄激素水平会导致女性生殖器向男性表型发育。因此,缺乏 HPA 轴抑制会导致严重的男性化,包括阴蒂增大和阴唇融合,以至于患有 CAH 的女孩有时在出生时会被诊断出错误的性别。男性化的程度取决于 CAH 基因型,并根据 Prader 分期进行分类。生殖器男性化可能会给患者带来心理和生理问题(11,12)。为了改善男性化,可以在幼儿期(大约 1.5 岁)或青春期进行生殖器手术(13,14,15)。简而言之,早期手术干预的结果并不理想,此外,手术是在未经患者同意的情况下对非危及生命的疾病进行的。虽然短期手术并发症可以得到控制(13、16、17),但即使手术是在较晚的年龄进行的(18、19、20),也无法避免与性功能相关的长期负面影响,而且这种情况经常被报道(15)。或者,患者和父母可以选择不进行手术。有迹象表明,单靠 GC 治疗就能将阴蒂长度缩短到一半以下(21),这使早期手术的必要性受到质疑。在成长过程中,对父母和未接受手术的女孩进行教育和心理支持非常重要。未来的研究应该调查女孩选择或不选择早期手术的经历、生活质量和心理结果。对于有生育 SV 或 SW CAH 孩子风险的夫妇,可以给孕妇服用合成的 GC 地塞米松 (DEX),以预防/减少 CAH 女孩的男性化。自 1980 年代以来,这种治疗方法就一直被使用 ( 22 )。然而,产前暴露
英国伦敦,2024 年 12 月 7 日——小分子激活 RNA (RNAa) 疗法的先驱 MiNA Therapeutics Limited 今天展示了其用于治疗镰状细胞病的主要 RNA 激活计划的新临床前数据,该计划展示了一流的活性和安全性。在圣地亚哥举行的 2024 年美国血液学会 (ASH) 年会上分享的数据也将在 2024 年 12 月 9 日太平洋标准时间下午 12:30 的海报展示会上重点介绍。MTL-HBG 是一种 RNAa 药物,旨在增加γ 珠蛋白基因 (HBG) 的转录,使镰状细胞病患者能够产生更高水平的胎儿血红蛋白 (HbF)。HbF 是一种补偿性血红蛋白,当诱导到足够的水平时,可保护镰状细胞病患者免受一系列症状的影响,包括复发性血管闭塞性危象和进行性器官损伤。 MiNA Therapeutics 首席执行官 Robert Habib 表示:“临床前数据表明 MTL-HBG 是治疗镰状细胞病的有希望的候选药物。MTL-HBG 安全诱导的胎儿血红蛋白水平强调了无需基因编辑即可预防严重症状的潜力。”“我们对这一令人信服的证据感到兴奋,这有力地支持将 MTL-HBG 推进到 IND 支持研究中。” MTL-HBG 可在体内给药,无需有害的预处理或复杂的细胞工程。MTL-HBG 包含 RNAa 有效载荷,它直接靶向 HBG 基因并封装在 NOV340 脂质体中。之前在 NOV340 脂质体中配制的 RNAa 药物已证明在非人类灵长类动物骨髓中生物分布到超过 60% 的红系祖细胞,并在临床试验中显示出初步的安全性和活性。 MiNA 预计将在 2025 年将 MTL-HBG 推进到 IND 支持研究中。海报题为“通过脂质体递送小激活 RNA 介导的 HBG 诱导用于镰状细胞病和β-地中海贫血的体内治疗”,重点介绍了 MTL-HBG 如何将人类骨髓组织来源的红系祖细胞中的 HbF 诱导为总血红蛋白 (% HbF) 的 3.6 倍。MTL-HBG 诱导的 HbF 水平超过 20%,这一阈值被广泛认为可以保护镰状细胞病患者免受血管闭塞危机的影响。红系祖细胞中的活性被证明是持久的、全细胞的和高度特异性的。MTL-HBG 在非人类灵长类动物中的体内递送已得到证实,证据是含有 HbF 的红细胞 (F 细胞) 的增加。在行业标准模型模拟中,每月服用 MTL-HBG 可使镰状细胞患者 HbF 达到 20%-30%。MTL-HBG 是 MiNA 基因医学产品组合中出现的首个候选药物。海报展示可在 MiNA 网站上找到:www.minatx.com。关于 MiNA Therapeutics MiNA Therapeutics 是小分子激活 RNA 疗法领域的领导者。利用基因激活的先天机制,小分子激活RNA疗法是一种革命性的新药物,可以恢复患者细胞的正常功能。我们正在推进一项