SAE5-35 是一种固态 -1000 至 35,000 英尺高度数据系统,可将压力高度转换为数字输出,如 SSR 压力高度传输国际标准中所述。SAE5-35 的数据输出以 29.92 英寸 HG(1013 毫巴)为基准。SAE5- 35 旨在为 GPS 和地形感知系统以及 C 模式转发器提供高度数据。SAE5-35 向转发器输出 Gillham Grey 码和两个独立的 RS232 数字输出,可供 GPS 或需要此格式的其他系统使用。此外,SAE5-35 还包括 SANDIA 航空航天独有的高度飞行监控 (AIM) 功能。通过添加可选的面板安装开关和信号器,AIM 模式将监控飞机是否偏离选定高度,并向飞行员发出通知。
为了将垂直间隔降至最低标准,需要精确监测飞机的巡航高度。这里关注的重点是测量飞机高度和海平面之间的距离。该距离可以通过机载气压高度计估算,也可以通过机载或地面站的电子无线电波系统测量。第一类设备的指示称为压力高度,或简称为高度,而第二类设备的指示称为几何高度或简称为高度。空中交通管制 (ATC) 中心的高度信息基于飞机应答器系统在收到由二次监视雷达发送的适当询问(称为模式 C 询问)后发送的压力高度测量值。实际上,高度信息是通过表示压力/高度关系的公式转换为高度指示的大气压力测量值。当飞机获准飞行高度时,实际上意味着飞行员必须继续在等压面上飞行。然而,高度测量系统可能会出现系统误差(偏差),这些误差对于每架飞机来说都是不同的,并且会严重影响安全性。因此,高度测量
AE4-393:航空电子考试解决方案 2007-10-29 1. 通信、导航、监视 [a] 压力高度和飞机识别。 [b] 两种模式的工作原理如下: • SSR 模式 A:询问间隔 P 1 和 P 3 等于 8µs。应答器使用飞机识别码 (ACID) 回复,该码由 ATC 定义并由飞行员在应答器代码界面上设置。它是一个 12 位代码,即有 2 12 种可能性,或 4096 个代码。 • SSR 模式 C:询问间隔 P 1 和 P 3 等于 21µs。应答器以 100 英尺 (QNE) 的步长回复飞机压力高度。 [c] 应答器答复由两个帧脉冲之间均匀分布的十二个数据脉冲组成。 SSR 发射三个询问脉冲,P 3 、P 2 和 P 3 。P 3 相对于 P 1 和 P 2 的位置决定了应答器应以哪种模式 (A/C) 应答。然而,每个天线都有一个主瓣和几个旁瓣。信号如图 1.1 所示。
美国陆军指定的 M- 143 直升机空中数据系统 (HADS) 可满足直升机 3 轴数据的所有要求,总空速精度优于 ±3 节,海平面压力高度任务重复性为 5 英尺。低成本、简单、旋翼机身下方安装使宝贵的旋翼桅杆区域可用于其他重要功能,例如防冰、夜视和武器瞄准设备。
压力高度 -1,000 至 +53,000 英尺 气压修正高度 -1,000 至 +53,000 英尺 垂直速度 0 至 20,000 英尺/分钟。指示空速 IAS 0/40 至 450 节 计算空速 CAS 0/40 至 450 节 真空速 TAS 0/100 至 599 节 最大。允许空速 VMO 150 至 450 节 MACH 数值 0.200 至 0.999 MACH 总空气温度 TAT -60 至 +99°C 静态空气温度 SAT -99 至 +60°C 气压设置 QNH 20.67 20.67 至 31.00 inHg 700 至 1,050 mbar
压力高度 -1,000 至 +53,000 英尺 气压修正高度 -1,000 至 +53,000 英尺 垂直速度 0 至 20,000 英尺/分钟 指示空速 IAS 0/40 至 450 节 计算空速 CAS 0/40 至 450 节 真空速 TAS 0/100 至 599 节 最大允许空速 VMO 150 至 450 节 MACH 数值 0.200 至 0.999 MACH 总气温 TAT -60 至 +99°C 静态气温 SAT -99 至 +60°C 气压设置 QNH 20.67 20.67 至 31.00 inHg 700 至 1,050 mbar
我们做了什么?对于军用直升机上使用的特定涡轴发动机,我们开发了一种数据驱动方法,从少量传感器数据(即发动机扭矩、动力涡轮入口温度、空气速度、外部空气温度和压力高度)中经验性地得出发动机整体状况的测量值。我们能够识别发动机随时间推移的退化,并将其与特定的使用模式和维护操作相关联。这使直升机操作员能够根据直升机的作战区域和使用情况进行预测性维护。该模型已根据历史数据(已知发动机故障)进行了验证。
空中数据功能采用在航空运输和高端商务喷气机中经过测试和完善的霍尼韦尔技术,是有史以来提供给通用航空的最可靠的系统。它可感应压力并计算指示和校准空速、马赫数、压力高度、气压修正高度(#1 和 #2)、总空气温度、静态空气温度和密度高度。该系统能够根据要求对静态源误差进行高度和空速修正,以满足缩小垂直间隔最小值 (RVSM) 的精度要求。这些数据通过独立的高速 ARINC 429 数据总线提供给显示器、自动飞行控制、飞行管理功能和其他外围系统。
是液体,在低温下会变成冰,即固态。在此示例中,温度是决定物质状态的主要因素。压力是影响物质状态变化的另一个重要因素。在低于大气压的压力下,水会沸腾,从而在低于 212° F (100° C) 的温度下变成蒸汽。例如,98.6° F (37° C) 时水的蒸气压等于约 63,000 英尺处的大气压。这意味着血液会在该压力高度沸腾!压力是将某些气体转变为液体或固体的关键因素。通常,当对气体施加压力和冷却时,它会呈现液态。以这种方式产生液态空气,即氧气和氮气的混合物。
是液体,在低温下会变成冰,即固态。在此示例中,温度是决定物质状态的主要因素。压力是影响物质状态变化的另一个重要因素。在低于大气压的压力下,水会沸腾,从而在低于 212° F (100° C) 的温度下变成蒸汽。例如,98.6° F (37° C) 时水的蒸气压等于约 63,000 英尺处的大气压。这意味着血液会在该压力高度沸腾!压力是将某些气体转变为液体或固体的关键因素。通常,当对气体施加压力和冷却时,它会呈现液态。以这种方式产生液态空气,即氧气和氮气的混合物。