迄今为止,简单二元材料类中的铁电性 (FE) 已引起人们对其多功能应用的极大兴趣。具体而言,利用第一性原理密度泛函计算预测了岩盐氧化物中的 FE 有序性 [1]。参考文献 [2] 指出,利用外延应变确实可以在铁磁岩盐 EuO 中诱导铁电性,从而使其具有多铁性 [3]。实验上,可以通过合适基底上的晶格失配、拉伸薄膜或通过化学掺杂剂来调整应变 [4,5]。外部应变已被用于诱导新型金属-绝缘体转变 [6] 和层状氧化物中的极性-非极性转变 [7]。此外,在 c 方向施加正应变时,电场可以在最初中心对称的氧非化学计量氧化物 Gd 掺杂 CeO 2-x 中诱导化学膨胀和高压电性 [8]。
摘要:药物转运蛋白在维持不同组织中的化学平衡和体内平衡中起着重要作用。除了它们的生理功能外,它们对于吸收,分布和消除许多临床上重要的药物至关重要,从而影响治疗效果和毒性。越来越多的证据表明,传染性,代谢,炎症和神经退行性疾病会改变药物转运蛋白的表达和功能。但是,当前对关键保护屏障(例如大脑和胎盘)中转运蛋白调节的知识仍然有限,需要更多的研究。例如,尽管许多研究都检查了P-糖蛋白,但很明显,缺乏对血液 - 脑屏障和血液 - 局部屏障中高表达转运蛋白的调节的研究。这篇评论的目的是总结当前可用的文献,以便更好地了解这些关键障碍中的运输者调节。
摘要:应变工程改变了原子级薄过渡金属二硫化物光学和电子性质。二维材料中高度不均匀的应变分布很容易实现,从而能够控制纳米级的性质;然而,探测纳米级应变的方法仍然具有挑战性。在这项工作中,我们通过开尔文探针力显微镜和静电门控表征非均匀应变单层 MoS 2,将应变的贡献与其他静电效应隔离开来,并能够测量长度小于 100 纳米的二维应变张量的所有分量。这些方法的组合用于计算由压电效应产生的静电势的空间分布,提供了一种表征非均匀应变和压电性的强大方法,可以扩展到各种二维材料。关键词:二维材料、过渡金属二硫化物、应变、压电性、开尔文探针力显微镜
通过机械变形改变过渡金属二硫属化物光学和电子特性的研究已非常广泛。它们在破裂前能够承受大变形的能力使带隙具有很大的可调谐性,而且,空间变化的应变已被证明可以控制带隙的空间分布并导致载流子漏斗等效应。单层过渡金属二硫属化物表现出显著的压电效应,可以与空间不均匀的应变分布耦合以影响电子和光学行为。我们通过实验和理论研究了结构中光致发光的一个例子,该结构具有与单光子发射器中相似的应变分布,但这里是通过纳米压痕产生的。使用纳米压痕引起的应变的机械模型,我们表明压电效应可以导致电荷密度达到 10 12 e/cm 2
开发用于修复临界骨缺损的脚手架的发展在很大程度上依赖于建立神经血管化的网络,以适当地渗透神经和血管。尽管在使用注入各种代理的人造骨状脚手架方面取得了重大进步,但仍然存在挑战。天然骨组织由一个多孔骨基质组成,该骨基质被神经血管化的骨膜包围,具有独特的压电特性,对骨骼生长必不可少。从该组件中汲取灵感,我们开发了一种模仿骨膜骨骨架的脚手架支架,具有压电特性,用于再生临界骨缺损。该支架的骨膜样层具有双网络水凝胶,由螯合的藻酸盐,明胶甲基丙烯酸酯和烧结的whitlockite纳米颗粒组成,模仿天然骨膜的粘弹性和压电性能。骨状层由壳聚糖和生物活性羟基磷灰石的多孔结构组成。与常规的骨状支架不同,这种生物启发的双层支架显着增强了成骨,血管生成和神经发生,结合了低强度脉冲超声辅助压电刺激。这样的方案增强了体内神经血管化的骨再生。结果表明,双层支架可以作为在动态物理刺激下加快骨再生的有效自动电刺激器。
-压电材料(铁电性、压电性、电致伸缩性、热电性) -光电材料(光电效应、光电应用、电光应用) -磁/电活性材料(磁场和电场的效应、磁/电活性材料的分类、磁/电活性材料的应用)
抽象的天然纤维增强复合材料(NFRCS)患有吸水和低温稳定性,导致纤维降解和随后的材料衰竭。研究了内置的压电传感器,以监视组件的变形/应变。作为来自橄榄石的可再生资源生物炭颗粒的低成本材料,在亚麻层和用作模型系统的纱线束上。碳黑色样品作为宠物型变体用作参考材料。生物炭和碳黑色覆盖的纤维系统被层压在环氧树脂中,然后进行拉伸测试。在测试过程中同时记录了电阻。Biochar在纳米到高千分尺范围(d <200μm)的宽大分布在传感器性能方面表现出色,颗粒大小范围较小d <20μm。具有集成生物炭颗粒的NFRC样品的量规因子(GF)达到30 - 80,而碳黑色不能超过8。为了获得最大的GFS,亚麻纱/层的纱线计数应尽可能薄,但仍然可以渗透粘附的粒子网络。与碳黑色相比,相对较大的粒径被确定为促成高GF的促成因子。
高品质因数 ( Q m ) 机械谐振器对于需要低噪声和长相干时间的应用至关重要,例如镜面悬挂、量子腔光机械装置或纳米机械传感器。材料中的拉伸应变使得能够使用耗散稀释和应变工程技术来提高机械品质因数。这些技术已用于由非晶材料制成的高 Q m 机械谐振器,最近也用于由 InGaP、SiC 和 Si 等晶体材料制成的高 Q m 机械谐振器。表现出显著压电性的应变晶体薄膜扩展了高 Q m 纳米机械谐振器直接利用电子自由度的能力。在这项工作中,我们实现了由拉伸应变 290 nm 厚的 AlN 制成的 Q m 高达 2.9 × 10 7 的纳米机械谐振器。AlN 是一种外延生长的晶体材料,具有强压电性。利用耗散稀释和应变工程实现 Q m × fm 乘积接近 10 13 的纳米机械谐振器
第 2 单元:静态场中绝缘体的介电特性:极化和介电常数、非原子气体介电常数的原子解释、非原子气体介电常数的定性分析、多原子分子的定性和定量介电常数、固体和液体中的内部场、固体的电常数、铁电材料的一些特性、自发极化压电性。
摘要:这项研究的重点是通过通过静电纺丝过程将银纳米颗粒(AGNP)掺入聚乙烯二烯氟化物(PVDF)纳米纤维中来制备复合纳米蛋白酶。对与PVDF相关的研究进行了简短综述。PVDF以其生物相容性和压电特性而闻名。由于已经证明生物组织中的电信号与治疗应用有关,因此研究了AGNP向PVDF添加对PVDF对压电性的影响,因为AGNP的能力增加了压电信号,以及提供抗细菌特性。通过扫描电子显微镜,能量分散性X射线光谱和傅立叶变换红外光谱法对制备样品进行表征。此外,使用细胞毒性测定法和对抗菌活性的评估检查了复合材料的生物学活性。获得的结果表明,与溶液铸造的样品相比,已经通过静电纺丝过程改进了PVDF纳米纤维进一步增强了压电性(结晶β-相分数),但仅具有AGNPS/PVDF浓度最高0.3%;纳米颗粒的进一步增加导致β相还原。细胞毒性测定显示PVDF/AGNPS纳米纤维对MDA-MB-231乳腺癌细胞系的有希望的作用,这是在对健康的MRC-5细胞系中显示出的无毒性。由于Ag含量,PVDF/AGNPS纳米纤维的抗菌作用表现出有前途的抗菌活性和金黄色葡萄球菌的抗菌活性。抗癌活性,结合纳米纤维的电特性,为癌症治疗开发的智能多功能材料提供了新的可能性。
