实现误差修正的逻辑量子比特及其之间的操作是进行有用量子计算的关键。离子振动模式系统是实现逻辑量子比特的良好候选。利用受激拉曼跃迁实现集体振动声子模式之间的分束器相互作用,从而实现声子模式之间的量子纠缠是实现逻辑量子比特之间操作的重要步骤。这种对多模式和压缩态的纠缠操作可用于生成连续变量簇态。此外,通过制备玻色子码作为离子振动态并利用上述分束器相互作用,可以实现跨多模式的门操作。
• 波粒二象性和不确定性原理 • 波函数、薛定谔方程、 • 时间无关的一维问题 • 算子形式主义 • 量化谐振子、LC 振荡器 • 光的量化、光子统计、相干态、福克态、压缩态 • 使用紧束缚模型的固体能带 • 时间无关微扰理论、非谐振子 • 原子与光相互作用的 Jaynes-Cummings 哈密顿量 • 量子比特、布洛赫球、单量子比特门、光子量子比特的路径编码 • 纠缠、贝尔不等式、双量子比特门 • 超密集编码、量子隐形传态、纠缠交换 • Hong-Ou-Mandel 干涉、相位超分辨率 • 混合态和密度算子 • 量子算法简介 学生学习成果
摘要 量子存储器(QM)可以实现飞行与静止量子态之间的量子态映射,是量子信息科学的基石,它可以实现大量量子信息协议,如跨远程量子节点的量子态传输、分布式量子逻辑门和量子进动测量网络。量子存储器已经取得了长足的进步,而电磁诱导透明(EIT)是 QM 中较为熟知的方法之一。光的量子态是实现量子增强任务必不可少的量子资源,存储和释放非经典光态是一个长期目标。本文介绍了基于 EIT 的 QM 的最新发展:EIT 量子存储器分别在热原子室、冷原子和固体系统中实现;EIT 机制已被用于存储和释放光模式的单光子、压缩态、纠缠光子对和多体纠缠态。
鉴于最近在电光采样在检测电磁场基态和超宽带压缩态的亚周期尺度量子涨落方面的实验应用方面取得的进展,我们提出了一种方法,将宽带电光采样从光谱方法提升为全量子断层扫描方案,能够在时间域中直接重建自由空间量子态。通过结合两种最近开发的方法来从理论上描述量子电光采样,我们以分析的方式将电光信号的光子计数概率分布与采样量子态的变换相空间准概率分布联系起来,该分布是采样中红外脉冲态和超宽带近红外探测脉冲之间时间延迟的函数。我们对噪声源进行了分类和分析,并表明在使用超宽带探测脉冲的量子电光采样中,可以观察到由于纠缠破坏而引起的热化。减轻热化噪声可以实现宽带量子态的断层重建,同时允许在亚周期尺度上访问其动态。
光子学是构建室温下运行的模块化、易于联网的量子计算机的首选平台。然而,到目前为止,还没有提出具体的架构来同时利用编码成光态的量子比特和生成它们的现代工具的优势。在这里,我们提出了一种可扩展容错光子量子计算机的设计,该设计基于理论和技术的最新发展。我们架构的核心是生成和操纵由玻色子量子比特和压缩真空态组成的三维资源状态。该提案利用最先进的程序进行非确定性玻色子量子比特的生成,并结合连续变量量子计算的优势,即使用易于生成的压缩态实现克利福德门。此外,该架构基于二维集成光子芯片,用于在一个时间和两个空间维度上产生量子比特簇状态。通过减少与现有架构相比的实验挑战并实现室温量子计算,我们的设计为可扩展的制造和操作打开了大门,这可能使光子学在通往具有数百万量子比特的量子计算机的道路上超越其他平台。
我们提出了一种在可控原子、分子和光学系统中制备自旋压缩态的协议,特别适用于与里德堡相互作用兼容的新兴光学时钟平台。通过将短程软核势与外部驱动器相结合,我们可以将自然出现的 Ising 相互作用转换为 XX 自旋模型,同时打开多体间隙。间隙有助于将系统保持在可以产生计量学上有用的自旋压缩的状态集合流形内。我们检查了我们的协议对实验相关退相干的稳健性,并显示出比缺乏间隙保护的典型协议更优的性能。例如,在 14 × 14 系统中,我们观察到软核相互作用可以产生与全对全 Ising 模型相当的自旋压缩,即使存在相关的退相干,其压缩量与具有 1 / r 3 偶极相互作用的无退相干 XX 自旋模型相同,并且比具有 1 / r 6 相互作用的无退相干 XX 自旋模型高 5.8 dB 增益。
摘要 通过模拟对基于 2 到 20 个纠缠原子的几种时钟协议的稳定性进行了数值评估,其中包括由于经典振荡器噪声引起的退相干效应。在这种情况下,André、Sørensen 和 Lukin [PRL 92, 239801 (2004)] 提出的压缩态与基于 Ramsey 协议的非纠缠原子时钟相比,提供了更低的不稳定性。当模拟超过 15 个原子时,Bužek、Derka 和 Massar [PRL 82, 2207 (1999)] 的协议具有较低的不稳定性。对具有 2 到 8 个量子比特的最佳时钟协议进行大规模数值搜索,与 Ramsey 光谱相比,时钟稳定性有所提高,对于两个量子比特,性能超过了分析得出的协议。在模拟中,激光本振由于闪烁频率 (1/ f ) 噪声而退相干。根据量子比特的投影测量,反复校正振荡器频率,假设量子比特彼此之间不会退相干。关键词:量子计量、自旋压缩、原子钟
提出了一种量子增强、无闲散传感协议,用于在有噪声和有损耗的情况下测量目标物体对探测器频率的响应。在该协议中,考虑了一个嵌入热浴中的具有频率相关反射率𝜼(𝝎)的目标。目的是估计参数𝝀 = 𝜼(𝝎 2) − 𝜼(𝝎 1),因为它包含不同问题的相关信息。为此,采用双频量子态作为资源,因为有必要捕获有关该参数的相关信息。对于双模压缩态(HQ)和一对相干态(HC),在假设的𝝀 ≈ 0 的邻域中计算相对于参数𝝀的量子费希尔信息H,𝝀的估计显示出量子增强。这种量子增强会随着被探测物体的平均反射率而增长,并且具有抗噪声性。推导出最佳可观测量的显式公式,并提出了基于基本量子光学变换的实验方案。此外,这项工作为雷达和医学成像(特别是在微波领域)的应用开辟了道路。
量子互联网连接远程量子处理器,这些处理器需要通过光子通道进行长距离交互和交换量子信号。然而,这些量子节点的工作波长范围并不适合长距离传输。因此,量子波长转换为电信波段对于基于光纤的长距离量子网络至关重要。在这里,我们提出了使用连续变量量子隐形传态的单光子偏振量子比特波长转换器,它可以有效地在近红外(适合与原子量子节点交互的 780/795 nm)和电信波长(适合长距离传输的 1300-1500 nm)之间转换量子比特。隐形传态使用纠缠光子场(即非简并双模压缩态),可以通过铷原子气体中的四波混合产生,使用原子跃迁的菱形配置。纠缠场可以以两个正交偏振态发射,相对相位锁定,特别适合与单光子偏振量子比特接口。我们的工作可能为实现长距离量子网络铺平道路。
b"其中 | z \xe2\x9f\xa9 = D ( z ) | 0 \xe2\x9f\xa9 是一个与真空态 | 0 \xe2\x9f\xa9 相关的相干态,通过位移算子 D ( z ) = exp \xe2\x88\x92 za \xe2\x80\xa0 \xe2\x88\x92 \xc2\xaf za 表示 Heisenberg\xe2\x80\x93Weyl 代数 [ a , a \xe2\x80\xa0 ] = 1 [ 6 ]。我们注意到,该提议看似简单,但代价是“字母”的非正交性,即 tr ( \xcf\x81 0 \xcf\x81 1 ) \xcc\xb8 = 0,导致它们的可区分性受到限制。由于相干态不需要非线性介质来产生,因此与早期利用压缩态 [ 7 ] 且要求“硬”非线性相比,使用相干态似乎更具优势 [ 3 ]。然而,实验技术的最新进展可能会扭转这一趋势,至少在超越标准相干态变得有利的情况下。以薛定谔猫态作为正交字母表状态的候选者为例 [ 1 ]。这项研究的目的是给出一个由 Gazeau\xe2\x80\x93Klauder 相干态组成的字母表候选者的例子 [ 8 ]。我们分析了与配备了克尔介质典型的多项式非线性的振荡器相关的 Gazeau\xe2\x80\x93Klauder 状态的二元通信。已经针对各种量子系统研究了 Gazeau\xe2\x80\x93Klauder 相干态:单模”