T2DM是一种代谢障碍,其特征是胰岛素抵抗和胰岛素分泌降低,导致异常的葡萄糖代谢和相关的代谢疾病。 T2DM是一种慢性疾病,可能导致各种并发症,包括肾脏疾病,视网膜病,心脏病,神经病和脑血管疾病(Deshpande等,2008; Zaccardi et al。,2016)。 T2DM在全球范围内变得越来越普遍,发病率和死亡率很高。 流行病学研究表明,患有糖尿病的个体患痴呆症的风险增加(Biessels等,2006)。 研究还表明,T2DM与大脑多个领域的认知下降和结构异常有关(Moheet等,2015)。 有人建议该关联T2DM是一种代谢障碍,其特征是胰岛素抵抗和胰岛素分泌降低,导致异常的葡萄糖代谢和相关的代谢疾病。T2DM是一种慢性疾病,可能导致各种并发症,包括肾脏疾病,视网膜病,心脏病,神经病和脑血管疾病(Deshpande等,2008; Zaccardi et al。,2016)。T2DM在全球范围内变得越来越普遍,发病率和死亡率很高。流行病学研究表明,患有糖尿病的个体患痴呆症的风险增加(Biessels等,2006)。研究还表明,T2DM与大脑多个领域的认知下降和结构异常有关(Moheet等,2015)。有人建议该关联
1广东核科学省级核科学关键实验室,量子问题研究所,南部师范大学,广州510006,中国2广东港量子量子问题,南部核科学计算中心,南部核科学计算中心联合实验室,中国南部师范大学,Quangzhou 510006,510006,510006,510006,510006,Quantomic and Sateronsy,Quantomia of Qualtomiak and ofernosia北京师范大学物理学,北京100875,中国5高能源物理中心,北京大学,北京大学100871,中国6通广东量子量子事务联合实验室。中国师范大学,广州510006,中国
摘要:Sachdev-Ye-Kitaev(Syk)模型是一个具有随机相互作用和强烈混乱动力学的N Majorana费物的系统,在低能量时,它可以接受全息二重描述,作为二维Jackiw-Teititelboim。因此,SYK模型提供了一种量子重力的玩具模型,该模型可能可行,可以使用近期量子硬件进行模拟。以减少这种模拟所需的资源的目的为动机,我们研究了SYK模型的稀疏版本,其中相互作用项被概率1 -p删除。具体而言,我们按数值计算光谱形式(SFF,Hamiltonian的特征值对相关函数的傅立叶变换)和最接近的邻居特征值间隙比R(表征连续特征值之间间隙的分布)。我们发现,当p大于过渡值p 1(缩放为1 /n 3)时,SFF和r均与完整的非扩展模型所获得的值匹配,并且具有随机矩阵理论(RMT)的期望。但对于p 低于较小的p 2,它也比例为1 /n 3,甚至连续特征值的间距与RMT值不同,这表明了光谱刚度的完全分解。 我们的结果对使用传送不忠作为损失函数获得的非常稀疏的SYK模型的全息解释提出了怀疑。低于较小的p 2,它也比例为1 /n 3,甚至连续特征值的间距与RMT值不同,这表明了光谱刚度的完全分解。我们的结果对使用传送不忠作为损失函数获得的非常稀疏的SYK模型的全息解释提出了怀疑。
4.7.6 电解电容器是一种特殊情况,其功率因数比其他类型的电容器高出几倍,并且由于“泄漏”电流会导致显著的自热。这种自热会随着时间推移而增加,并可能累积导致完全失效,因此降额尤为重要。非电解电容器可以降额至最大额定电压的 10%,尽管这在物理上很少可行;然而,这对于电解电容器来说并不适用,因为需要最低电压来建立和维持这些类型的极化,因此在这些低水平下可能会出现更高的故障率。固体钽类型的主要降额参数是“浪涌电压”,而其他电解类型的主要降额参数是“纹波电流”。这些电容器不得在低于最低规定电压的情况下运行;它们应该降额,但仍符合制造商的最低要求。
N. Farchmin、P. Trunschke、M. Eigel、S. Heidenreich 15:50 通过线性回归方法将抛物线与测试点的两个相关坐标进行匹配 J.Puchalski、ZLWarsza
第 6 章 场发射 6.1 简介 电子束在许多应用和基础研究工具中起着核心作用。例如,电子发射用于阴极射线管、X 射线管、扫描电子显微镜和透射电子显微镜。在许多此类应用中,希望获得高密度的窄电子束,且每束的能量分布紧密。所谓的电子枪广泛用于此目的,它利用热阴极的热电子发射来操作。然而,由于发射电子的热展宽,实现具有窄能量分布的电子束很困难。因此,冷阴极的场发射备受关注,但需要大的电场导致尖端表面的原子迁移,因此难以实现长时间稳定运行。碳纳米管可能为这些问题提供解决方案。事实上,碳纳米管在冷场发射方面具有许多优势:与金属和金刚石尖端相比,纳米管尖端的惰性和稳定性可以长时间运行;冷场发射的阈值电压低;工作温度低;响应时间快、功耗低、体积小。本章后面将讨论,利用纳米管优异场发射特性的原型设备已经得到展示。这些设备包括 X 射线管 [Sug01]、扫描 X 射线源 [Zha05]、平板显示器 [Cho99b] 和灯 [Cro04]。在详细介绍场发射之前,我们先介绍一下早期的实验工作,这些工作确立了碳纳米管在场发射方面的前景 [Hee95]。图 6.1 显示了测量碳纳米管薄膜场发射的实验装置。其中,碳纳米管薄膜(纳米管垂直于基底)用作电子发射器。铜网格位于纳米管薄膜上方 20 微米处,由云母片隔开。在铜网格和纳米管薄膜之间施加电压会产生一束电子,该电子束穿过铜网格,并在距离铜网格 1 厘米的电极处被检测到。 (需要注意的是,这些实验是在高真空条件下进行的,场发射装置位于真空室中,残余压力为 10 -6 托。)图 6.1 显示了这种装置的电流与电压曲线,表明正向偏置方向的电流大幅增加(发射类似于二极管:对于负电压,电流非常小)。为了验证光束确实由电子组成,光束在磁场中偏转,偏转对应于具有自由电子质量的粒子的偏转。该图的插图显示了 ( ) 2 log / IV vs 1 V − 的图,即所谓的 Fowler-Nordheim 图(更多信息请参见