摘要:Sachdev-Ye-Kitaev(Syk)模型是一个具有随机相互作用和强烈混乱动力学的N Majorana费物的系统,在低能量时,它可以接受全息二重描述,作为二维Jackiw-Teititelboim。因此,SYK模型提供了一种量子重力的玩具模型,该模型可能可行,可以使用近期量子硬件进行模拟。以减少这种模拟所需的资源的目的为动机,我们研究了SYK模型的稀疏版本,其中相互作用项被概率1 -p删除。具体而言,我们按数值计算光谱形式(SFF,Hamiltonian的特征值对相关函数的傅立叶变换)和最接近的邻居特征值间隙比R(表征连续特征值之间间隙的分布)。我们发现,当p大于过渡值p 1(缩放为1 /n 3)时,SFF和r均与完整的非扩展模型所获得的值匹配,并且具有随机矩阵理论(RMT)的期望。但对于p 低于较小的p 2,它也比例为1 /n 3,甚至连续特征值的间距与RMT值不同,这表明了光谱刚度的完全分解。 我们的结果对使用传送不忠作为损失函数获得的非常稀疏的SYK模型的全息解释提出了怀疑。低于较小的p 2,它也比例为1 /n 3,甚至连续特征值的间距与RMT值不同,这表明了光谱刚度的完全分解。我们的结果对使用传送不忠作为损失函数获得的非常稀疏的SYK模型的全息解释提出了怀疑。
主要关键词