定量SEM/EDS分析的原位标本方向方法的开发和验证粘土Klein 1*,Faith Corman 1,Joshua Homan 1,Brady Jones 1,Brady Jones 1,Abbeigh Schroeder 1,Heavenly Duley 1和Chunfei Li 11。宾夕法尼亚州克拉翁大学,化学,数学和物理系,美国宾夕法尼亚州克拉里昂 *通讯作者:clay.w.klein@gmail.com定量分析具有扫描电子/能量分散式X射线/能量的标本元素组成的元素组成,以确保X射线光谱(SEM/EDIMENS)不需要一定的情况。错误。特别是,为了准确的定量EDS分析,标本表面必须足够平坦,并且与SEM的电子束具有正交性[1,2]。在本演示文稿中,我们报告了一种在SEM中,肉眼看不见的足够平坦的微观表面的方法的开发和验证,使得表面与传入的电子束是正交的。该方法基于使用多个SEM图像来测量两个点之间的距离的变化,而两个点之间的界线垂直于SEM倾斜轴,在不同的倾斜角度上。该方法利用了多个SEM图像和测量值,它为我们当前在开发和统计上分析试样方向过程中使用的工具提供了一个良好的测试基础,比以前的方法更有效,更精确[3]。SEM具有两个操作,可以实现对象的原位操纵:旋转和倾斜。要应用该方法,我们使用了以随机旋转和倾斜角度定向的宏观平坦样本。2。[4]。旋转操作通过平行于传入的电子束(定义为轴)的轴的角度旋转样品,而倾斜操作则通过围绕轴(轴)垂直于旋转轴的角度倾斜样品。对于以某个任意角度倾斜的平面,我们将适当的角度定义为 - 参数空间中的坐标,使得平面的表面与电子束正交。一旦确定了足够平坦的平面,我们可以通过以下步骤确定适当的角度:(1)以增量旋转角度进行一系列SEM图像,((2)用一定角度倾斜样品,(3)重复(3)重复(1)和(4)度量,对于每个旋转角度,在斜角和直至图像中的两个特征之间的距离。可以通过形成倾斜度的比率并在每个旋转角度以测量为单位,并将理论上确定的曲线与数据拟合,从而计算出适当的角度。具有50 m的视野,每10°旋转以0°,20°和-20°旋转每10°旋转。测量是在SEM图像上进行的,如图1形成两个点之间的距离之比。在图中显示了这些测量结果的曲线使用最小二乘曲线拟合程序,确定最佳和值。图中还显示了以适当角度定向的样品的图片2;我们看到表面似乎与电子束的方向是正交的。
对于某些可区分的函数h:r d→r和d二维向量的总数。这种特征的示例包括例如总均值,比率或相关系数。这也称为有限的人口推断问题(Beaumont和Haziza 2022)。我们进一步假设n很大,每个单个实验的计算成本也是不可行的。在这种情况下,研究经常诉诸于子采样。亚采样方法在过去几年中的人口急剧增加。例如,MA,Mahoney和Yu(2015); Ma等。(2022)引入了大数据回归的杠杆采样,随后启发了逻辑回归的类似发展(Wang,Zhu,Zhu和Ma 2018; Yao and Wang 2019)广义线性模型(AI等人。2021b; Yu等。2022)和分位回归(Ai等人2021a; Wang,Peng和Zhao 2021)。同样,Dai,Song和Wang(2022)开发了
定量测量微电子设备中电场的定量测量由位于原位的STEM Victor Boureeau 1,Lucas Bruas 2,Matthew Bryan 2,Matthew Bryan 2,Jean-LucRouvière3和David David Cooper 2** 1* 1。电子显微镜跨学科中心,EPFL,洛桑,瑞士。2。大学。Grenoble Alpes,CEA,Leti,Grenoble,法国。3。大学。Grenoble Alpes,CEA,Irig-Mem,Grenoble,法国。*通讯作者:David.cooper@cea.fr纳米尺度上字段的定量映射对于了解设备的行为并提高其性能至关重要。从历史上看,这是通过过轴电子全息图执行的,因为该技术已经成熟并提供了可靠的定量测量[1]。近年来,硬件的改进使扫描传输电子显微镜(STEM)实验期间的衍射模式的记录成为可能,从而生成所谓的4D-STEM数据集。越来越多的数据处理方法与特定的采集设置相结合,导致了广泛的像素化词干技术[2]。在这里,我们探讨了以像素化的茎构型进行的差异相位对比度(DPC)技术[3] [4]。它允许根据衍射平面中发射光束的强度位移对电场进行定量测量。我们将展示如何受显微镜和数据处理的配置影响类似DPC的像素化的茎测量值。结果将与电子全息图和仿真进行比较。样品在图1和图2中显示。1(c)。开始,我们将在掺杂的硅P -N结上进行工作,并以对称1 E 19 cm -3的浓度掺杂,在-1.3 V的反向偏置下进行检查。使用此样品,平均内部电位(组合电位)没有变化,偏置电压会增加内置电场。通过聚焦的离子束制备了连接的横截面,并在FEI Titan显微镜中使用Protochips Aduro 500样品支架附着在芯片上进行原位偏置实验,该实验在200 kV下运行。1(a,b),晶体厚度为390 nm,如收敛束电子衍射测量。使用二级离子质谱掺杂剂测量作为输入,用Silvaco软件对结中的电场进行建模。整个连接处的轮廓如图通过离轴电子全息图测量了偏置连接的电场,请参见图。1(c,d),并在除去非活动厚度后与建模很好地一致[1]。反向偏见的P-N连接的电场的大小约为0.65 mV.cm -1,耗尽宽度约为60 nm。已经研究了不同的像素化的茎构和处理方法,以测量连接处的电场。当探针大小大于特征场变化长度时,导致射击梁内部强度重新分布时,使用了一种算法(COM)算法。当传输梁小于场变化并经历刚性变速时,使用模板匹配(TM)算法[5]。2(a)。电场图如图首先,使用低磁化(LM)茎构型,使用的一半收敛角为270 µRAD,相机长度为18 m。连接处的衍射图显示了传输梁边缘处强度的重新分布,因此使用COM加工,请参见图。2(e)和图中绘制了一个轮廓。2(i)。连接点的耗尽宽度似乎约为100 nm,这表明由于LM茎配置的探针大小较大,
哺乳动物细胞培养物是生物医学研究中的基石资源,但是已发表的实验的结果通常会遇到可重复性的挑战。这导致着眼于细胞培养条件对细胞反应的影响和实验发现的可重复性。在这里,我们频繁地对溶解的O 2和CO 2进行了光学传感器斑点和CO 2进行原位监测,并在三种广泛使用的人类体细胞和多能干细胞系的标准批次培养物中对细胞增殖和中pH的同时评估。我们整理了来自文献的数据,以证明标准细胞培养物始终表现出环境不稳定性,这表明这可能是影响实验发现的普遍问题。我们的结果表明,在标准批次培养期间,体外细胞培养物始终经历大量的环境参数。这些发现应促进进一步的努力,以增加实验结果与体内生理学的相关性并增强可重复性。
Abdelali Khelfa,Jaysen Nelayah,Hakim Amara,Guillaume Wang,Christian Ricolleau等。Quantative Quantative Quantative Quantative to-Quantative to-Quantative to-Quantative to-Quantative to-Quantative to totual of Totual of Totual of Themal of total效果对溶液中金纳米晶体形成的热效应。高级材料,2021,33(38),pp.2102514。10.1002/adma.202102514。hal-03414114
自然界中的微生物广泛参与许多地球化学过程,例如矿物风化(Doetterl等,2018)和有机污染物的生物降解(Kimak等,2019)。为了更好地理解这些过程,对微生物的密度进行定量很重要,由于营养的可用性,尤其是在生长和衰减阶段的情况下,这大大变化。特异性生长与细菌的衰减速率与养分之间的关系通常是使用最初由Monod(1941,1949)开发的动力学模型来建模的。在多孔培养基中获取微生物密度的传统方法基于原位采样(一种侵入性方法)和废水孔隙 - 水微生物分析。由于细菌倾向于附着在晶粒表面上,因此孔隙水微生物分析低估了细菌计数(Drake等,1998)。因此,开发一种可以非侵入性监测微生物密度的方法被认为是重要的。
隶属关系1。荷兰尼杰梅根大脑,行为和认知研究所2.语言和遗传学系,荷兰Nijmegen,Max Planck心理语言学研究所。3。鼠标成像中心,生病儿童医院,多伦多,安大略省,M5T 3H7,加拿大4。美国马萨诸塞州波士顿哈佛医学院遗传学系。 5。 美国马萨诸塞州波士顿的杨树和妇女医院病理学系。 6。 美国马萨诸塞州波士顿哈佛医学院遗传学系。 7。 美国马萨诸塞州波士顿的杨树和妇女医院病理学系。 8。 哈佛大学哈佛大学,哈佛大学,美国马萨诸塞州剑桥。 9。 牛津大学,牛津大学牛津大学,牛津郡,牛津郡,牛津大学,奥克斯39du,英国10。 荷兰尼杰梅根拉德布德大学医学中心人类遗传学系。 11。 医学成像系,拉德布德大学医学中心,邮政信箱9101,荷兰尼亚梅根美国马萨诸塞州波士顿哈佛医学院遗传学系。5。美国马萨诸塞州波士顿的杨树和妇女医院病理学系。6。美国马萨诸塞州波士顿哈佛医学院遗传学系。 7。 美国马萨诸塞州波士顿的杨树和妇女医院病理学系。 8。 哈佛大学哈佛大学,哈佛大学,美国马萨诸塞州剑桥。 9。 牛津大学,牛津大学牛津大学,牛津郡,牛津郡,牛津大学,奥克斯39du,英国10。 荷兰尼杰梅根拉德布德大学医学中心人类遗传学系。 11。 医学成像系,拉德布德大学医学中心,邮政信箱9101,荷兰尼亚梅根美国马萨诸塞州波士顿哈佛医学院遗传学系。7。美国马萨诸塞州波士顿的杨树和妇女医院病理学系。8。哈佛大学哈佛大学,哈佛大学,美国马萨诸塞州剑桥。9。牛津大学,牛津大学牛津大学,牛津郡,牛津郡,牛津大学,奥克斯39du,英国10。荷兰尼杰梅根拉德布德大学医学中心人类遗传学系。11。医学成像系,拉德布德大学医学中心,邮政信箱9101,荷兰尼亚梅根
摘要微生物学影响的腐蚀对水下考古遗址的影响刺激了研究的最新进展,研究了微生物与历史保护之间的联系。尽管钢铁残骸地点的微生物组一直是DNA测序研究和其他学科研究的主题,但铝制飞机残骸是第二次世界大战的突出象征,尚未成为类似研究的重点。本文代表了通过描述用于从夏威夷岛附近的第二次世界大战飞机站点获得样品的生物膜收集方法来填补这一空白的初步尝试。而不是依靠代理在沉船上或破坏性抽样上的微生物生长,而是重点是一种生产力但微不足道的方法论。协议导致了四个淹没飞机残骸的原位生物膜样品成功归类。该方法被发现负担得起,时间有效且可再现,因此对于考古站点管理而言是可行的。生物膜的可行原位收集方法的发展应有助于努力评估微生物学影响与淹没飞机的腐蚀的相关性,同时可以对微生物进行纵向研究,从而可能影响现场保存。
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
由于电解质很难进入纳米多孔还原石墨烯(RGO)电极的纳米构固定空间,因此实现了这些设备的最佳电化学性能是一个挑战。在这项工作中,在电压控制的纳米孔RGO电极的电化学激活过程中研究了界面州现象的动力学,该电化学激活在人体能力和电化学障碍方面导致电化学性能增强。原位/操作表征技术用于揭示激活过程中引入的不可逆材料变化的动力学,包括纳米孔内的离子差异和水的构成,以及含氧组的还原和RGO Interlayer距离的减少。此外,操作技术用于揭示RGO电极的复杂极化依赖性动态响应的起源。研究表明,石墨烯基平面中剩余官能团的可逆质子化/去质子化和阳离子电吸附/解吸过程控制纳米孔RGO电极的假能性能。这项工作为纳米多孔RGO电极的电化学循环过程中发生的表面化学,离子实现和脱染过程之间的复杂相互作用带来了新的了解,从而为设计基于Nanoporor rgo的高强度电极设计了新的见解。