目前的工作提出了一种新颖的自动互联网(IoT)光谱传感系统,用于通过反射信号对葡萄成熟的现场光学监测。为此,开发,表征和操作在实验室和现场条件下量身定制的硬件。它包括三个互补模块:光学模块,主机模块和控制器模块。光学模块包括四个光电探测器和四个LED,最大发射波长为530、630、690和730 nm,它们与葡萄浆果直接接触。主机模块包括LED驱动程序和模拟前端,以获取信号。最后,控制器模块提供了对系统的完全控制,并确保数据存储,电源管理和连接性。该系统能够通过线性响应(R 2> 998)在4 - 100%的范围内测量反射率,并且在不同的光学单元之间具有很高的可重复性。这种设计使从红色收集反射信号成为可能(cv。Touriga Nacional)和白色(cv。Loureiro)实验室和现场环境中的葡萄品种。在整个成熟期(大约两个月)中,这种光学指纹(由不同的反射强度组成)与葡萄浆果质量参数的演变之间的关系进行了分析和讨论。实验室数据用于建立一个基于部分最小二乘正方形的多元模型,以预测两个品种中总可溶性固体(TSS)含量。ir)甚至荧光。模型误差(交叉验证中的均方根误差)分别为2.31和0.73°,Touriga Nacional和Loureiro分别为Brix。在系统实时预测TSS的潜力的说明性示例中,将该模型应用于在现场获取的数据。监测期内收集的现场观察结果还提供了有关光传感器无人值守操作期间可能发生的潜在问题的相关信息。此外,所提出的光学模块的模块化体系结构使使用不同的LED和光电视图以及光学过滤器的组装成为可能。这创造了使用相同原理在不同光谱范围内测量反射率的可能性(例如,本文所述的结果为这项技术的未来发展铺平了工作,其中包括基于反射数据的最相关的葡萄成熟参数的预测模型,以及作为无线传感器网络的一部分的操作。
•从社交媒体中摄入实时信号使能够遵循长期健康趋势•自动重新训练,作为打击机器学习概念漂移的一种手段•改善了使用社交媒体数据
图1:(a)Tesseract磁力计设计在30%玻璃填充的Torlon工程塑料的对称块中固定了六个微型低噪声赛车芯。这些赛道芯是由Miles等人(2022年)开发的,用准螺旋驱动绕组包裹,以调节核心的渗透性,然后用螺线管般的旋转旋转覆盖以感知调制信号。Tesseract的反馈线圈在相同的玻璃填充摩托底座上缠绕,以实现结构稳定性。这些反馈线圈(红色)以三个轴四轴Merritt线圈排列,该线圈在传感器内部产生了巨大的磁同质性区域。(b)Aut Build 80
通过谱系可塑性和发散的克隆进化(3,5-7)。CRPC-NE患者通常通过类似于小细胞肺癌(SCLC)的化学疗法方案进行积极治疗,并且还在进行几项CRPC-NE指导的临床试验。当前CRPC-NE的诊断仍然存在,因为需要转移活检以及室内肿瘤异质性。浆细胞-FRE-FREDNA(CFDNA)的DNA测序是一种无创的工具,可检测CER中的体细胞改变(8)。但是,与CRPC-Adeno相比,癌症特异性突变或拷贝数的变化仅在CRPC-NE中适度富集(3,9)。相反,我们和其他人观察到与CRPC-NE相关的广泛的DNA甲基化变化(3,10),并且可以在CFDNA中检测到这种变化(11,12)。DNA甲基化主要是在CpG二核苷酸上进行的,并且与广泛的生物学过程有关,包括调节基因的表达,细胞命运和基因组稳定性(13)。此外,DNA甲基化是高度组织特异性的,并提供了强大的信号来对原始组织进行反v,从而允许增强循环中低癌部分的检测(16、17),并已成功地应用于早期检测和监测(18,19)。如前所述,可以用甲硫酸盐测序来测量基础分辨率下的DNA甲基化,该测序为每种覆盖的CpG提供了一小部分甲基化的胞质的β值的形式,范围为0(无甲基化)至1(完全甲基化)。低通序测序遭受低粒度,并以粗分辨率捕获所有区域。原则上,诸如全基因组Bisulfite CFDNA测序(WGB)之类的方法可以很好地了解患者的疾病状况,并具有最佳的甲基化含量信息。实际上,鉴于高深度全基因组测序的成本,WGB的低通型变种适用于大规模的临床研究。鉴于此上下文中的大多数CPG站点可能是非信息或高度冗余的,我们旨在将测序空间减少到最小设置
引言深海环境是鲜为人知的,更难研究地球上的生态系统之一,与地球深海相比,火星表面的地图更好(1)。尽管人类已经能够进入数千年的各种陆地生态系统,但自从人类具有探索和研究海洋的能力以来,已经几百年了。最现代的技术进步,可促进与深海生活相互作用的互动,例如配备了钛机操纵器的远程操作的车辆(ROV),是由工业部门和与国防相关的工业推动的(2)。然而,近年来,软机器人技术等领域的进步将更多地集中在与海洋生物学家合作并为益处合作而开发的脆弱海洋生物操纵上(3-8)。与先进的水下想象技术相结合(9),它扩大了生物学询问,只有在受控的实验室环境中才有可能对深海的精致动物进行。在这项研究中,我们结合了机器人的跨学科协同作用,深海标本封装,定量的三维(3D)成像和分子生物学,以收集可用于识别,描述和进一步了解深海组织的丰富数据。通过结合水下成像和移动机器人平台,我们解锁了新机制,以实现深海海洋生物群的定量观察(10)。这些探险中的第一个我们报告了一个工作流程和技术套件,其中包括结构化成像,封装,原位保存和基因组测序,以提供有关有机体系统的大量信息。该项目涉及两次研究探险队在Schmidt海洋研究所的R/V Falkor上,以及ROV Subastian,这是一个4500 m评级的工作级ROV系统。
泡沫。传统的 PFAS 检测分析方法采用耗时的提取方法,然后进行冗长的色谱分离和质谱检测。为了克服这些问题,锥形喷雾电离 (CSI) 由折叠滤纸制成的三维锥体组成,允许将固体样品放置在空心隔间内。将溶剂应用于固体样品,在那里发生液体萃取。在锥体的尖端有一个小孔,允许 PFAS 通过,同时保留土壤。施加高电压使分析物电离,然后通过质谱仪 (MS) 进行分析。虽然传统 CSI 在分析固体方面表现出色,但由于手动锥体结构的多变性,可重复性可能是一个限制。
高能密度锂金属电池是首选的下一代电池系统,并用聚合物固态电解质代替易燃液体电解质是实现高安全性和高特异性设备的重要性。不幸的是,电极/电解质和Li树突生长之间的固体 - 固体接触较差的固有的棘手问题阻碍了其实际应用。The in-situ solidification has demonstrated a variety of advantages in the application of polymer electrolytes and artificial interphase, including the design of integrated polymer electrolytes and asymmetric polymer electrolytes to enhance the compatibility of solid–solid contact and compatibility between various electrolytes, and the construction of artificial interphase between the Li anode and cathode to suppress the formation of Li dendrites and to增强聚合物电解质的高压稳定性。本综述首先阐述了固态电池的原位固化历史,然后专注于固化电解质的合成方法。此外,总结了聚合物电解质的设计和人工之间的构建,原地固化技术的最新进展也得到了总结,并且强调了原位固化技术在增强安全性方面的重要性。最后,设想了前景,新兴挑战和实用固化的实际应用。
摘要:带有尖晶石LI 4 Ti 5 O 12(LTO)电极的锂离子固态电池具有显着的优势,例如稳定性,长寿和良好的乘法性能。在这项工作中,通过大气等离子体喷涂方法获得LTO电极,并通过在LTO电极上的原位紫外线(UV)固化制备复合固体电解质。使用柔软的组合策略设计了复合固体电解质,并将电解质制备成聚(乙烯基氟化物-CO-HEXAFRUOROPYLENE)(PVDF-HFP)的复合材料(PVDF-HFP)柔性结构和高导不导率Li 1.3 Al 0.3 Al 0.3 Ti 1.7(PO 4)(PO 4)3(LATP)硬颗粒。复合电解质在30℃下表现出高达0.35 ms cm -1的良好离子电导率,而在4.0 V上方的电化学窗口显示出。原位和原位电解质被组装到LTO // Electrolete // Li Solid-State电池中,以研究其对电池电化学性能的影响。结果,组装的Li 4 Ti 5 O 12 //原位电解质// Li电池的性能速度很高,其容量保留率为90%,在300个周期后,在0.2 mA/cm 2时为0.2 mA/cm 2。这项工作为制造新型高级固态电解质和电极的新方法提供了一种新方法,用于应用固态电池。
为了验证新型处理技术对地下水中多氟烷基和全氟烷基物质去除效果,项目团队将进一步研究现场吸附剂再生的潜力。吸附剂再生可以通过直接破坏吸附在过滤介质上的 PFAS(例如热处理、电化学处理或声/超声波处理)或将吸附的 PFAS 洗脱到小液体基质中来实现。本研究旨在展示后一种概念,其中小批量的含 PFAS 液体再生剂将随后使用由 NAVFAC 总部资助的项目开发的中试规模超声波分解反应器进行破坏。
图 1 原位原子力显微镜 (AFM) 在锂电池中的应用概述。阳极 - 电解质界面表征图像。经许可复制。26 版权所有 2020,美国化学学会。阴极 - 电解质界面表征图像。经许可复制。27 版权所有 2022,Wiley-VCH GmbH。AFM 压痕图像。经许可复制。28 版权所有 2020,Elsevier Inc. 硅电极图像。经许可复制。29 版权所有 2014,Elsevier BV Li-S 电池表征图像。经许可复制。30 版权所有 2017,Wiley-VCH GmbH。Li-O2 电池表征图像。经许可复制。31 版权所有 2013,美国化学学会。NMC 变形表征图像。经许可复制。 32 版权所有 2020,Elsevier Ltd. 阴离子插层表征图像。经许可复制。33 版权所有 2020,清华大学出版社和 Springer - Verlag GmbH Germany,Springer Nature 的一部分。CE,对电极;DMT,Derjaguin – Muller – Toporov;HOPG,高取向热解石墨;PES,1% 丙烯-1-烯-1,3-磺内酯;RE,参比电极;WE,工作电极。