14:55-15:20(G06-24) 密闭单层水/冰的温度-压力相图:第一性原理精度的机器学习力场(特邀) 李蕾,南方科技大学
ISCO 代表欧洲五项可持续可可国家倡议:比利时的 Beyond Chocolate、荷兰可持续可可倡议 (DISCO)、法国可持续可可倡议 (FRISCO)、德国可持续可可倡议 (GISCO) 和瑞士可持续可可平台 (SWISSCO)。通过合作,ISCO 齐心协力共同解决可可行业的关键问题。在一份谅解备忘录 (MoU) 中,ISCO 确定了该行业的四个共同挑战,并记录了他们为实现更可持续的可可行业而开展合作的目标。
高能密度锂金属电池是首选的下一代电池系统,并用聚合物固态电解质代替易燃液体电解质是实现高安全性和高特异性设备的重要性。不幸的是,电极/电解质和Li树突生长之间的固体 - 固体接触较差的固有的棘手问题阻碍了其实际应用。The in-situ solidification has demonstrated a variety of advantages in the application of polymer electrolytes and artificial interphase, including the design of integrated polymer electrolytes and asymmetric polymer electrolytes to enhance the compatibility of solid–solid contact and compatibility between various electrolytes, and the construction of artificial interphase between the Li anode and cathode to suppress the formation of Li dendrites and to增强聚合物电解质的高压稳定性。本综述首先阐述了固态电池的原位固化历史,然后专注于固化电解质的合成方法。此外,总结了聚合物电解质的设计和人工之间的构建,原地固化技术的最新进展也得到了总结,并且强调了原位固化技术在增强安全性方面的重要性。最后,设想了前景,新兴挑战和实用固化的实际应用。
第四族元素及其氧化物,如硅、锗、锡和二氧化硅,具有比商用石墨阳极高得多的理论容量。然而,这些材料在循环过程中体积变化很大,导致严重的结构退化和容量衰减。Al 2 O 3 涂层被认为是提高高容量阳极材料机械稳定性的一种方法。为了直接了解 Al 2 O 3 涂层的效果,我们使用原位聚焦离子束扫描电子显微镜 (FIB-SEM) 监测了循环过程中涂层/未涂层 Sn 颗粒的形貌变化。结果表明,Al 2 O 3 涂层提供局部保护并减少体积膨胀早期裂纹的形成。3nm Al 2 O 3 涂层比 10nm 和 30nm 涂层提供更好的保护。尽管如此,由于体积膨胀较大,Al 2 O 3 涂层无法防止循环后期的粉碎。
纳米医学为改善传统化疗的临床结果提供了一个有希望的机会,传统化疗通常存在水溶性差、肿瘤靶向能力低和血液/肾脏清除速度快的缺点。1 – 3 一些纳米制剂,包括脂质体、4 – 7 聚合物、8 – 11 和无机材料 12 – 14,具有增强渗透性和保留 (EPR) 效应,在实验室中比游离分子药物表现出更高的功效。然而,很少有抗癌纳米药物获得美国食品药品监督管理局 (FDA) 批准。15 – 17 最明显的局限性之一是这些纳米制剂通常需要多种成分,这导致结构异质性、重现性差和赋形剂引发的生物毒性,这些都是限制临床转化的重要障碍。 18 – 20 另一个限制是,尽管抗肿瘤药物在纳米载体的帮助下被运送到肿瘤,但它们在肿瘤病灶中的保留率很低。 21 – 23 分子药物由癌细胞中的 e ffl 通量蛋白泵出,导致
纳米医学为提高现有药物的疗效以及开辟新的治疗策略(例如基因治疗的出现)提供了新的可能性。在血流中流动时,药物纳米载体与血液蛋白质相互作用,通常会经历大小、形状或聚集的物理变化,以及表面的化学变化。游离蛋白质与纳米颗粒 (NP) 表面的相互作用导致蛋白质冠 (PC) 的形成,这种蛋白质外壳的结构和组成对纳米颗粒在任何生物体中的命运起着重要作用。[1–3] 例如,PC 中的 ApoE 和丛生蛋白的存在与血流清除速度变慢有关。[4] 其他特定蛋白质的吸附也与脑易位增强、[5] 肝细胞靶向、[6] 巨噬细胞摄取减少 [7] 或细胞摄取整体改变有关。 [8,9] PC形成的一个重要结果是改变或筛选纳米颗粒药物递送系统的靶向配体,这最终影响其治疗效果。[10]
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该预印本版本的版权持有人,该版本发布于2025年2月5日。 https://doi.org/10.1101/2025.01.31.635109 doi:Biorxiv Preprint
产品。Mission Elements ISRU-Construction Influence ISRU-Construction Needs ISRU-Construction Products Descent/Ascent - Propellant options - Vehicles designed to use ISRU - O 2 , H 2 , CH 4 , other Vehicles - Descent/ascent vehicle size & available payload capability - Lander/ascent vehicle Delta-V/ Rendeqvous Orbit - Lander/engine configuration - Lander servicing design and capability -可重复使用/表面跳跃
在结构键中,粘附器和粘合剂之间的界面几乎是二维的,使其容易受到微小污染的影响,这可能会导致弱键。诸如联邦航空管理局(FAA)等监管组织通常需要次要键入初级结构中的冗余负载路径,以减轻无法证明债券绩效的。为了解决这个问题,NASA融合航空解决方案(CAS):复合材料的粘合无粘合键(Aerobond)项目正在研究重新计算的航空航天环氧树脂 - 摩trix树脂,以在二级键合和固定过程中启用关节界面上的树脂的反射和扩散。组装过程中基质树脂的反流和混合可以消除界面处的材料不连续性,从而消除了在接近二维边界处键对粘合性能的依赖性。Aerobond工艺开发评估了许多参数,包括所使用的材料,环氧树脂的化学计量偏移,治愈的时间和温度以及每个层的厚度。没有原位过程监测,在机械测试完成之前,测试文章的状况尚不清楚。本文描述了使用原位超声检查系统来监视使用Aerobond技术组装的两个复合零件的连接。这项工作通过在整个治疗周期的关节处测量波反射或缺乏波浪反射来量化界面。此外,结果表明何时发生环氧树脂的回流和固化。通过使用最近开发的原位检验方法与移动超声传感器,可以在高分辨率的大部分关节上获得局部结果。
所有生物体,包括人类,都能够通过分子过程进行再生,这些过程由控制更新、修复和生长的基因表达程序指导。再生医学的最新进展利用哺乳动物身体的先天再生潜力来产生复杂的组织结构。利用身体的再生能力与工程生物材料相结合的方法被称为原位组织再生。具体而言,装载有生物活性信号的工程生物材料可用于将内源性祖细胞或干细胞引导至受伤部位并帮助受损组织的愈合。在此过程中,生物材料提供了一个结构框架,以促进宿主干细胞和祖细胞的附着和迁移,并驱动这些细胞分化为组织特异性细胞类型。现代组织工程概念由 Langer 和 Vacanti 1 于 1993 年提出。自那时起,人们制造出了一系列具有可调生物物理和生化特性的合成生物材料。为了优化细胞的使用,人们开发了在特定体外条件下分离和扩增细胞、填充合成支架并获得可植入体内的载细胞支架的方案。最近,细胞重编程的概念从根本上改变了再生医学的进程 2 。通过这种方法,终末分化细胞(如皮肤细胞)可以通过传递改变细胞命运的