钒的氧化状态决定了它的迁移率和毒性,已有报道称多种微生物存在异化钒酸盐还原反应,突出了该途径在钒污染修复和生物地球化学循环中的潜在意义。然而,到目前为止,已知的大多数能够还原钒酸盐的微生物都是属于变形菌门的革兰氏阴性呼吸道细菌。在本研究中,我们从北部中印度洋脊的深海沉积物中分离出一株嗜热杆菌 VROV1 菌株,并研究了其还原钒的能力以及钒酸盐对其细胞代谢的影响。一系列培养实验表明,分离的菌株在发酵过程中能有效地将 V(V) 还原为 V(IV),即使在 mM 水平上也是如此,而且这种还原涉及直接的生物过程,而不是通过代谢产物的间接还原。钒影响微生物的碳和氮代谢。值得注意的是,在钒酸盐存在的情况下,丙氨酸产量会减少,这表明代谢通量从转氨反应转向钒酸盐还原。T. mesophilus VROV1 是继 Lactococcus raffinolactis 之后第二种被鉴定为能还原钒的革兰氏阳性细菌,但这些细菌属于不同的类别:T. mesophilus 被归类为梭菌,而 L. raffinolactis 被归类为芽孢杆菌。VROV1 去除钒酸盐的特定速率高达 2.8 pmol/细胞/天,与金属还原细菌相当,明显超过 L. raffinolactis。我们的研究结果扩大了细菌领域内钒酸盐还原生物的分布。鉴于 T .嗜温杆菌及其近亲,我们推测发酵钒酸还原对钒的全球生物地球化学循环的影响可能比以前认为的更大。
使用7E11-C5,沃伦·赫斯顿(Warren Heston)与威廉·费尔(William Fair)在纪念斯隆·凯特林(Sloan Kettering)癌症中心(Memorial Sloan Kettering Cencer Center)在1993年克隆了PSMA基因(2,3)。PSMA,也称为叶酸水解酶1(FOLH1)和谷氨酸羧肽酶II(GCP-II),是750-氨基酸,100KD,II型II型跨膜蛋白,具有短N- N-末端内末端内末端内末端结构蛋白和大型C-细胞端子末端区域和大型C- t端端域外细胞外域(2)。psma主要在前列腺和近端肾小管的子集中表达,在小肠,唾液腺,唾液腺和一些神经胶质细胞中的表达较低(1-5)。在1993年,赫斯顿得出结论,“作为前列腺上皮细胞独有的整体膜蛋白,抗原或可能是特定的PSM [A]配体可以作为转移性沉积物的出色位点,以靶向转移性沉积物,”将PSMA作为Theranostic靶标的阶段(2)。