电动汽车中的抽象电池安全性是一项全面的工程努力,需要在每个阶段进行一致的考虑,包括电池材料,电池组设计和电池管理系统(BMS)。本综述着重于锂离子电池的安全管理策略和实际应用。电池安全的管理主要包括充电和放电安全,高压安全性和热安全性。在其中,充电和排放安全管理旨在防止电池损坏或由过度充电或出院造成的安全事件。高压安全管理涉及检测绝缘断层,过电流和其他潜在风险,以防止电气危害。热安全管理确保单个电池电池,模块和电池组保持最佳的工作温度范围和均匀的温度分布,从而防止热失控。
我们研究了城市与区域能源系统之间电力转移的连接能力对这两个系统的设计和运行的影响。城市能源系统由瑞典南部三个城市的总能源需求代表,区域能源系统由瑞典电力价格面积SE3代表。我们考虑到城市与地区能源系统之间的不同水平的连接能力,将电力和地区供暖部门的投资和运行成本降至最低;连接容量等于最大城市电力需求的100%,75%,50%和0%。我们发现,与100%连接能力的系统相比,具有50%连接能力的系统设计仅高3%。然而,将电力的产能从区域转移到城市能源系统(50%),而100%的连接容量会导致城市的电力边际成本高于该地区。具有最高的连接能力,75%和100%,该市的地区供暖部门可以通过电力热运营来支持区域能源系统中的风力电力整合。具有不同连接能力的建模系统使我们的结果适用于其他快速增长的城市,具有增加当地电力生产和电力,区域供暖和电动运输部门之间的部门耦合。©2021作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
这项研究介绍了一种创新的多学科设计方法,用于高度导电和轻巧的针脚的散热器,利用石墨烯技术的优势。主要目的是优化电动汽车(EV)中基于硅碳化物(SIC)的逆变器的热管理。在模块上,在模块上进行了综合分析,包括扫描电子显微镜(SEM)和能量色散X射线光谱(EDS),在模块上进行了全面的分析。采用3D结合传热(CHT)方法的详细流体动力学模型用于评估与冷却液接触的SIC功率开关的热行为。多学科分析最初是在基于铝制的散热器上实施的,经过实验验证,随后与石墨烯进行了比较。与热链设计中的石墨烯的整合表现出显着的改进,包括在6 L/min min流体流量的情况下,传热系数(HTC)增加了24.4%,热电阻(接收到流体)降低了19.6%。因此,与铝制版本相比,基于石墨烯的散热器中的SIC芯片的温度升高11.5%。通过采用石墨烯而不是传统金属实现的SIC逆变器的冷却解决方案的改进,作为概念证明。这表示在性能和功率密度之间的关键平衡方面向前迈出了一步。
肠球菌包含一组乳酸菌(LAB),具有巨大的用作食品发酵微生物的潜力。不幸的是,由于发生致病性和多药抗性菌株,肠球菌受到了很多负重的关注。在这项研究中,我们使用基因组学来选择44个研究的肠球菌分离株中的安全糖果。 对四十四菌株的基因组进行了充分测序,并评估了毒力和抗生素耐药基因的存在。 属于乳酸肠肠球菌,肠球菌,杜兰肠球菌和泰国肠球菌的19个分离株被认为免受基因组分析的安全性。 评估的二级代谢产物基因簇评估了细菌素的存在,并发现十二个候选物可以分泌抗微生物化合物,可有效针对从奶酪和金黄色葡萄球菌分离出的listeria monocytogenes。 生理表征显示,在dustrial潜力中有19个;所有菌株在42°C时生长良好,酸化1.5小时的速度比乳腺乳酸乳酸菌乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳突乳酸乳杆菌(Lactococcoccus)乳注。 我们得出的结论是,所检查的肠球菌中有很大一部分是安全的,并且可以用作具有固有生物保护能力的优秀食品发酵微生物。在这项研究中,我们使用基因组学来选择44个研究的肠球菌分离株中的安全糖果。对四十四菌株的基因组进行了充分测序,并评估了毒力和抗生素耐药基因的存在。属于乳酸肠肠球菌,肠球菌,杜兰肠球菌和泰国肠球菌的19个分离株被认为免受基因组分析的安全性。的二级代谢产物基因簇评估了细菌素的存在,并发现十二个候选物可以分泌抗微生物化合物,可有效针对从奶酪和金黄色葡萄球菌分离出的listeria monocytogenes。生理表征显示,在dustrial潜力中有19个;所有菌株在42°C时生长良好,酸化1.5小时的速度比乳腺乳酸乳酸菌乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳突乳酸乳杆菌(Lactococcoccus)乳注。我们得出的结论是,所检查的肠球菌中有很大一部分是安全的,并且可以用作具有固有生物保护能力的优秀食品发酵微生物。
分数量子霍尔 (FQH) 相是由于强电子相互作用而出现的,其特征是任意子准粒子,每个准粒子都具有独特的拓扑参数、分数电荷和统计数据。相反,整数量子霍尔 (IQH) 效应可以从非相互作用电子的能带拓扑中理解。我们报告了所有 FQH 和 IQH 跃迁中临界行为的令人惊讶的超普适性。与预期的状态相关临界指数相反,我们的研究结果表明,对于分数和整数量子霍尔跃迁,临界标度指数 κ = 0.41 ± 0.02 和局域长度指数 γ = 2.4 ± 0.2 相同。从中,我们提取了动力学指数 z ≈ 1 的值。我们已经在超高迁移率三层石墨烯器件中实现了这一点,其中金属屏蔽层靠近传导通道。在之前的研究中,由于在传统半导体异质结构中 κ 的测量值存在显著的样本间差异,而长程关联无序占主导地位,因此在各种量子霍尔相变中观察到的这些全局临界指数被掩盖了。我们表明,稳健的标度指数在短程无序关联的极限下是有效的。
集体自旋波激发,镁元素是下一代Spintronics设备的有前途的准颗粒,包括用于信息传输的平台。在量子大厅铁磁体中,检测这些电荷 - 中性激发依赖于以多余的电子和孔的形式转化为电信号,但是如果多余的电气和孔相等,则检测到电信号是挑战性的。在这项工作中,我们通过测量镁产生的电噪声来克服这一缺点。我们使用石墨烯的Zeroth Landau级别的对称性破裂的量子厅Ferromagnet来启动镁质。这些镁的吸收在Zeeman能量上方产生过多的噪声,即使平均电信号为零,也仍然有限。 此外,我们制定了一个理论模型,其中噪声是通过边缘通道之间的平衡和传播镁来产生的。 我们的模型还允许我们查明设备中弹道木棒运输的状态。在Zeeman能量上方产生过多的噪声,即使平均电信号为零,也仍然有限。此外,我们制定了一个理论模型,其中噪声是通过边缘通道之间的平衡和传播镁来产生的。我们的模型还允许我们查明设备中弹道木棒运输的状态。
在本研究中,我们展示了如何使用量子计算来评估分子的电子密度。我们还认为电子密度可以成为未来量子计算的有力验证工具,而传统量子化学可能无法解决这一问题。电子密度研究是化学、物理学和材料科学等多个领域的核心。霍恩伯格-科恩定理规定,电子密度唯一地定义了电子系统的基态特性。1通过赫尔曼-费曼定理,2电子密度提供了分子内作用力的信息。3,4作为物理科学中信息最丰富的可观测量之一,5-10密度为密度泛函理论 (DFT) 奠定了基础,DFT 是一种预测多电子系统特性的形式化方法。11由于实验是真理的仲裁者,所以责任通常落在电子密度上。重要的是,电子密度可以通过细化X射线衍射和散射数据来重建,9例如使用多极模型、5-8、10X射线约束波函数12或最大熵方法。13我们工作的一个动机是
NAVFAC 开放环境修复资源 (OER2):确定 MEC/MPPEH 水下埋藏深度的方法军用弹药被发现在某些水下位置,这是历史处置活动以及实弹训练、测试和其他操作的结果。在水下环境中仍能发挥作用的射弹和其他弹药构成爆炸危险,可能会迁移,使人员接触到这些弹药。这种爆炸危险的管理很复杂,取决于特定地点的考虑因素,例如弹药类型、海洋环境、移动潜力以及人员如何接触和与弹药互动。本次网络研讨会的目的是总结为了解水下环境中弹药的移动性和埋藏而开发的科学。将介绍环境观测、弹药观测技术、移动性和埋藏现场观测、移动与埋藏的物理学以及埋藏的物理过程建模。演示将以将这些知识在现有场地的实际应用结束。 演讲者:Bryan Harre,NAVFAC EXWC 和 Joe Calantoni,美国 NRL 博士 日期:2022 年 11 月 9 日,星期三 时间:太平洋时间上午 11 点 | 美国东部时间下午 2 点 通过以下链接注册参加网络研讨会:https://einvitations.afit.edu/inv/anim.cfm?i=697664&k=0468450F7D53 如果您无法点击链接,请将地址复制并粘贴到您的网络浏览器中。 州际技术与监管委员会 (ITRC) 关于可持续弹性修复 (SRR) 的网络研讨会 极端天气事件会对修复措施保护人类健康和环境的能力产生不利影响。可持续弹性修复 (SRR) 被定义为“清理和再利用危险废物场地的优化解决方案,可限制负面影响、最大化社会和经济效益并增强对日益增加的威胁的抵御能力”。该网络研讨会介绍了一些工具,可帮助将可持续和有弹性的实践融入修复项目中。主题:可持续的弹性修复演讲者:ITRC 日期:2022 年 11 月 17 日时间:太平洋时间上午 10 点 | 美国东部时间下午 1 点通过以下链接注册参加 ITRC 网络研讨会:https://clu-in.org/conf/itrc/SRR/有关更多信息,请查看 ITRC 关于此主题的报告:https://srr-1.itrcweb.org/ RPM 培训活动主题的最后一次征集 RPM 培训主题的最后一次征集:现在到 2022 年 11 月 16 日链接:https://einvitations.afit.edu/inv/anim.cfm?i=699708&k=04684B0E7B5F RPM 培训日期更新:2023 年 3 月 14 日至 16 日*这与原始/预计日期不同* 正在评估场地,活动举办批准将决定最终日期和地点。
超级电容器和可充电电池都是储能设备,其中一种的性能优势传统上是另一种的弱点。电池受益于卓越的储能容量,而超级电容器具有更高的功率和更长的循环寿命。这些设备在电动汽车和电网储能应用中的快速应用正在推动它们的进一步发展和生产。积累和理解这两种设备技术的现有知识将为这两个有着共同目标的不同领域未来研究和开发的进展奠定基础。因此,在这篇评论中,我们汇总了过去 18 年超级电容器和电池的能量功率性能趋势,以预测未来十年这些技术的发展方向。我们特别讨论了每种技术在储能领域的影响及其对混合研究的影响。趋势预测表明,到 2040 年,性能最佳的非对称和混合超级电容器在能量密度 (ED) 方面可以与目前正在开发的商业电池技术相媲美。在功率密度 (PD) 方面,电池技术可以实现与某些基于双电层 (EDL) 的超级电容器相当的性能。对于某些应用,我们预见到这两种设备将继续混合以填补能量功率缺口,从而使增强 ED 对 PD 的惩罚变得微不足道。这种预期的改进最终可能会达到饱和点,这表明一旦达到一定水平的 ED,任何进一步的指标增强只会导致与 PD 的严重权衡,反之亦然。在这些技术中观察到的饱和也促使人们探索新的途径,特别强调可持续性,以使用可再生材料和方法实现高性能。
私人家庭投资(PVS)和电池的投资的利益取决于电力的市场价格,这反过来又受PVS和PVS和电池的使用的影响。这在集中发电系统与对PVS和电池的家庭投资之间创造了反馈机制。为了调查这种反馈效果,我们将用于家庭投资的本地优化模型与欧洲发电销售模型联系起来。本地优化基于对214个瑞典家庭测量的消费量。模型比较了2032年的集中电力供应系统的三种不同方案,以及几种敏感性情况。我们的结果表明,在调查案件中,瑞典家庭中瑞典家庭中电池存储容量的5 E 20 gW P的总投资水平为5 E。这些级别比算上市场反馈之前的水平低33%。光伏投资的利益受到的影响受到电力价格以及有关电网关税和税收的假设的最大影响。电池投资的价值取决于PV电力和市场套利的自我消费增加的好处。©2020作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
