能源管理是适用于智能建筑物(SBS)的微电网(MGS)的主要挑战之一。因此,更多的研究是必不可少的,要考虑建模和操作方面,以利用系统的即将到来的不同应用程序。本文介绍了一种新型的能源管理建筑模型,该模型基于完整的监督控制和数据获取(SCADA)系统的职责,其中包括MG实验室(LAB)测试床,该模型在罗马萨皮恩扎大学的电气和能源工程系中名为Lambda。Lambda MG实验室以小规模A SB模拟,并与Dieee电网连接。lambda mg由光伏发电机(PV),电池能量存储系统(BESS),智能开关板(SW)以及不同的分类负载(关键,必不可少的和正常)组成,其中一些是可管理的且可控制的(照明,空调,空调,空调,智能插头)。Lambda实施的目的是使Diaee Smart用于节能目的。在Lambda实验室中,通信体系结构包括由两个主要国际标准(电气和技术监控系统的工业序列标准)和KONNEX(商业和家庭建筑自动化的开放标准)进行的大师/奴隶单位和执行器组成。使电气部门的智能原因从主电网中降低所需的电源。因此,为了实现目标,已经以两种模式进行了研究。最后,在不同的情况下对拟议的模型进行了研究,并从经济方面进行了评估。最初,基于SCADA系统的实时模式,该模式揭示了不同来源和负载的实际日常功耗和生产。接下来,将模拟零件分配给基于能量管理系统的主网格,负载和BES充电和放电的行为。©2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
受气候缓解目标国家的驱动国家,全球大流行后的经济增长和恢复的低成本可再生能源的优先级。很明显,可疑的技术选择会导致更广泛的社会经济利益,这是在将其能源部门朝着更高份额的可再生能源份额过渡到更高份额的国家中所表明的。对更好地理解能源过渡对就业的直接影响的兴趣越来越大,对传统能源部门失去的工作的担忧将对世界各地的决策介绍至关重要。这项研究重点是加速可再生能源的净就业影响,该净摄入量将于2050年到2050年从可再生能源中获得100%的能源,与巴黎协议的雄心勃勃的目标兼容。与电力,热量,运输和脱盐部门相关的直接能源工作从2020年的约5700万增加到到2050年的近1.34亿。可再生能源和可持续技术中的价值链比采摘化石燃料更重要。结果表明,全球能源过渡将对世界各地经济的未来稳定和增长产生积极影响。©2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
能源弹性是能源政策和研究的重要焦点,因为能源系统正面临越来越多的挑战,例如由于可再生能源生产增加而导致的电力短缺,以及极端天气导致的停电风险。通常,在这些情况下,能源弹性侧重于基础设施和确保电力供应不受干扰。本文提出了一个关于弹性的补充观点,以家庭为研究弹性的起点。基于对多个学科弹性的理解,我们提出了家庭能源弹性的定义,可用于探索家庭如何在电力供应不稳定的情况下确保未来生活良好。此外,我们借鉴了能源富裕环境下未来家庭能源使用的当前想法(备用能源、能源效率、灵活性和能源自给自足),以创建一个探索家庭能源弹性的框架。我们发现不同想法之间存在多样性的潜力,而这种多样性并不总是存在于主流的未来能源使用愿景中。从家庭能源弹性的角度来看,我们希望挑战电力需求不可协商的观念,并揭示支持家庭在不确定的未来变得更具弹性的机会。
摘要 我们使用飞机调度场景中的尾部分配和精确覆盖问题,对迄今为止最大的量子退火器(5000+ 量子比特量子退火器 Advantage 及其 2000+ 量子比特前身 D-Wave 2000Q)的量子处理单元进行了基准测试。基准测试集包含小型、中型和大型问题,其中既有稀疏连接实例,也有几乎完全连接的实例。我们发现,Advantage 在几乎所有问题上都优于 D-Wave 2000Q,成功率和问题规模都有显著提高。特别是,Advantage 还能够解决 D-Wave 2000Q 无法再解决的具有 120 个逻辑量子比特的最大问题。此外,仍然可以由 D-Wave 2000Q 解决的问题可以通过 Advantage 更快地解决。然而,我们发现,D-Wave 2000Q 可以在不需要 Advantage 上存在的许多新耦合器的情况下解决稀疏连接问题并获得更好的成功率,因此提高量子退火器的连通性本身并不会提高其性能。
采用定向能量沉积技术在用于硬面堆焊的热作工具钢基材上沉积了具有不同层数的冷作工具钢。本研究涉及了覆层工具钢中的缺陷和微观结构。在沉积区发现了包括孔隙和裂纹在内的缺陷,其数量随着沉积高度或层数的增加而增加。大的不规则孔隙主要位于沉积层的下部区域。此类孔隙的形成归因于合金元素在孔隙表面的偏析和热量输入不足。非平衡共晶微观结构是孔隙邻近区域的特征。另一方面,开裂往往发生在沉积层的上部。确定了导致开裂的两个重要因素。第一个是微观结构梯度,当从底部移动到顶部沉积层时,微观结构梯度从细胞状树枝状晶变为柱状树枝状晶。其次,根据Thermocalc软件的模拟,沉积的冷作工具钢表现出相对较大的凝固温度范围,从而对热裂纹具有很高的敏感性。
线束是现代汽车车辆中电子系统的必不可少的硬件。随着汽车行业向电力和自动驾驶的转变,越来越多的汽车电子设备负责能源传输和关键安全功能,例如操纵,驾驶员援助和安全系统。此范式转移从安全角度来看,对汽车线束的需求更大,并强调了在车辆中高质量的线束组件的更重要性。但是,熟练的工人仍然手动执行电线线束组件的大多数操作,并且某些手动过程在质量控制和人体工程学方面都是有问题的。行业对提高竞争力并获得市场份额的需求也持续存在。因此,需要确保组装质量,同时提高人体工程学并优化人工成本。由机器人或人类机器人协作完成的机器人组装,是实现越来越苛刻的质量和安全性的关键推动力,因为它可以使比完全手动操作更具复制,透明和可理解的过程。然而,由于可变形物体的灵活性,在实际环境中,机器人的汇编组装在实际环境中具有挑战性,尽管在简化的工业结构下提出了许多初步的自动化解决方案。先前的研究E↵Orts提出了使用计算机视觉技术来促进线束组件的机器人自动化,从而使机器人能够更好地感知和操纵灵活的线束。本文介绍了针对机器人线束组件提出的计算机视觉技术的概述,并得出了需要进一步研究的研究差距,以促进更实用的机器人丝带线束。
用于半分割的大多数现有知识蒸馏方法着重于从原始特征中提取各种复杂知识。但是,这种知识通常是手动设计的,并且像传统功能工程一样依赖于先前的知识。在本文中,我们旨在提出一种使用RAW功能的简单有效的功能蒸馏方法。为此,我们重新审视了功能蒸馏中的开创性工作,Fitnets可以将平方误差(MSE)损失(MSE)损失最小化。我们的实验表明,在某些情况下,这种幼稚的方法可以产生良好的结果,甚至超过了一些精心设计的方法。但是,它需要仔细调整蒸馏损失的重量。通过将fitnets的损失函数分解为差异项和角度差项,我们发现角度差异项的重量受教师特征和学生特征的幅度的影响。我们通过实验表明,角度差异项在特征蒸馏中起着至关重要的作用,而不同模型产生的特征的大小可能会有很大变化。因此,很难确定各种模型的适合减肥体重。为了避免角度蒸馏术语的重量受到特征的影响,我们提出了角度蒸馏,并探索沿不同效率尺寸的蒸馏角度信息,以进行语义分割。广泛的例子表明,我们的简单方法对超级参数表现出极大的效果,并实现了语义细分的最先进的蒸馏性能。
摘要 真实的核反应截面模型是可靠的重离子传输程序的重要组成部分。此类程序用于载人航天探索任务的风险评估以及离子束治疗剂量计算和治疗计划。因此,在本研究中,GSI-ESA-NASA 合作生成了总核反应截面数据集合。该数据库包括实验测量的总核-核反应截面。Tripathi、Kox、Shen、Kox-Shen 和 Hybrid-Kurotama 模型与收集的数据进行了系统比较。给出了有关模型实施的详细信息。指出了文献中的空白,并考虑了哪些模型最适合与太空辐射防护和重离子治疗最相关的系统的现有数据。
基于小分子受体(SMA)的全PSC。 [1–8] 近年来,随着新型高效PD和聚合小分子受体(PSMA)的快速发展,全PSC的能量转换效率(PCE)已升至16%。 [9–14] 然而,目前报道的PCE超过13%的全PSC仅有少数,仍然远低于最先进的基于SMA的全PSC。更重要的是,它们的机械性能还远远达不到可穿戴设备的要求(即要求裂纹起始应变(COS)至少为20–30%)。阻碍基于PSMA的全PSC性能的主要障碍是强烈相分离的共混物形貌,这是由于高分子量PD和PSMA的分离导致的,从而导致电荷产生和传输无法优化。 [15,16] 这些非最优形态通常包括共混膜中的许多缺陷位点(即尖锐的畴-畴界面和大的聚合物聚集体),限制了低 COS 下的机械强度和拉伸性。[17–19] 此外,聚合物共混物的相分离受 PD 和 PA 的聚集和结晶行为的影响。特别是,含有高度结晶、刚性 SMA 单元的 PSMA 通常具有非常强的结晶和聚集特性,导致强烈的相分离
文章标题:抗击 COVID-19:人工智能技术与挑战 作者:Nikhil Patel[1]、Sandeep Trivedi[2]、Jyotir Moy Chatterjee[3] 所属机构:毕业于杜比克大学,联系电子邮件 ID:Patelnikhilr88@gmail.com[1],IEEE 会员,毕业于 Technocrats Institute of Technology,联系电子邮件 ID:sandeep.trived.ieee@gmail.com[2],尼泊尔加德满都佛陀教育基金会[3] Orcid id:0000-0001-6221-3843[1]、0000-0002-1709-247X[2]、0000-0003-2527-916X[3] 联系电子邮件:sandeep.trived.ieee@gmail.com 许可信息:本作品已以开放获取形式发表根据 Creative Commons 署名许可 http://creativecommons.org/licenses/by/4.0/,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行公开同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVK63O.v2 预印本首次在线发布:2022 年 7 月 25 日 关键词:COVID-19、SVM、神经网络、NLP、数学建模、高斯模型、疫情防控
