电子束治疗的应用:主要应用是(a)皮肤和唇部癌的治疗,(b)乳腺癌的胸壁照射,(c)给节点的增强剂量,以及(d)头和颈部癌的治疗。尽管这些位点中的许多可以用浅表X射线,近距离放射治疗或切向光子束处理,但电子束照射在目标体积的剂量均匀性方面具有明显的优势,并最大程度地减少了对更深的组织的剂量。电子相互作用当电子通过介质传播时,它们通过库仑力相互作用而与原子相互作用。这些过程是(a)与原子电子(电离和激发),(b)与核(bremsstrahlung)的无弹性碰撞,(c)与原子电子的弹性碰撞,以及(d)与核里的弹性碰撞。在非弹性碰撞中,某些动能丢失,因为它用于产生电离或转化为其他形式的能量,例如光子能量和激发能。在弹性碰撞中,尽管可以在碰撞中出现的颗粒中重新分布动能,但不会损失动能。在低原子数培养基(例如水或组织)中,电子主要通过用原子电子电离事件失去能量。在较高的原子数材料(例如铅)中,Bremsstrahlung的生产更为重要。在与原子电子的碰撞过程中,如果被剥离的电子获得的动能足够大,以引起进一步的电离,则电子被称为二次电子或A(delta)-Ray。作为电子束在介质中行驶,能量会不断降解,直到电子达到热能并被周围原子捕获。
我们开发了一种干涉技术,用于对光学晶格中非平衡超冷玻色子的场正交算子进行时间分辨测量。该技术利用磁性原子的内部状态结构来创建两个具有不同自旋状态和晶格位置的原子子系统。费什巴赫共振会关闭一个自旋子系统中的原子间相互作用,使其成为一个特征明确的参考状态,而另一个子系统中的原子则会在可变的保持时间内经历非平衡动力学。通过第二次光束分裂操作干涉子系统,通过检测相对自旋布居,可以对相互作用的原子进行时间分辨的正交测量。该技术可以为各种哈密顿量和晶格几何形状(例如立方、蜂窝、超晶格)提供正交测量,包括具有隧穿、使用人工规范场的自旋轨道耦合和高频带效应的系统。通过分析隧穿可忽略的深晶格的特殊情况,我们获得了正交可观测量及其涨落的时间演化。作为第二个应用,我们表明干涉仪可用于测量原子间相互作用强度,超海森堡标度为 ¯ n − 3 / 2(平均每个晶格点的原子数),标准量子极限标度为 M − 1 / 2(晶格点数)。在我们的分析中,我们要求 M ≫ 1,并且对于实际系统,¯ n 很小,因此总原子数 N = ¯ nM 的缩放低于海森堡极限;尽管如此,在此系统中应该可以进行基于相互作用的量子计量学的缩放行为测试。
服务以产品为中心,不提供数字数据交换所需的规范。向 AIM 过渡的核心要素是原子数据元素在字段名称、字段类型和字段定义方面的精确标准化。这将以航空数据字典(也称为元数据注册表)的形式提供。此外,还需要根据特征、属性和关联定义字段的标准结构化分组。这将以航空信息概念模型标准的形式提供。最后,需要商定在不同组件之间维护最新数据集的机制;这将以航空数据交换模型标准的形式提供。这些模型的演变将在全球范围内组织,以确保服务的连续性,同时考虑到创新和新要求。
通常的计算机断层扫描(CT)系统提供有关组成对象的材料的布局和性质的信息。但是,此信息仅限于材料的明显线性衰减µ。要以有效的原子数z eff和电子密度ρe的形式达到更精确和准确的描述,可以使用双能量成像。常规的双能计算机计算机(DECT)技术是:(a)进行预处理的双能数据集并执行常规CT重建[1],(b)重建双能量数据集并分析获得的线性衰减数据集的比例,并在A上进行了一定的材料[2,3]和(C)[2,3],3]和(C) [4-6]。第二种技术相对方便地设置,但并非完全独立于能量。第三种技术已被证明相当有效;但是,它提出了一个用于分解的材料基础选择的问题。检查由大量不同材料组成的复杂物体时,此选择可能至关重要。因此,这项工作着重于将第一个技术扩展到高能,因为它不需要对材料进行任何假设,并通过系统频谱响应考虑了光束硬化效应。DEV源通常是X射线管,将诊断能范围限制在几百kV中。对于大而厚的物体,必须具有等效的X射线衰减,高达1 m的混凝土,高能(> 6 mV)的扫描仪是强制性的。[1]和Azevedo等。[7]需要扩展。在这样的能量下,E + E - 对生产优先于光电效果,而Alvarez等人启动了双能分解的工作。由于E + E - 对生产横截面𝜎 𝜎没有分析公式,该模型以第二阶多项式𝑔𝑔()的形式将贡献与原子数Z分开,并从能量E分开,并提出了第三阶多项式𝑔𝑃𝑃()和第三阶多项式1𝑓(and)。
p et Imaging使用放射性对比剂来诊断和治疗各种医疗状况。PET成像提供了有关人体内疾病细胞和分子途径的独特信息,这与G-木霉和SPECT提供的疾病相辅相成。PET也经常用于小动物分子成像研究(1)。一项宠物研究始于放射性示踪剂的给药。PET数据获取是基于对数百万对相对指向的511射光子光子的一致检测,每种对the剂(tracer radionuclide标签的衰减产物)的灭绝产生的每种都会引起。使用高原子数,高密度和厚的辐射探测器检测到所得的歼灭光子通常排列在圆柱几何形状中(例如,图。1)。
开发环保电源生产技术。开发由竹,石灰石和姜黄制成的发电厂,以增加电解质溶液中电子的跳跃。这项研究旨在揭示姜黄作为从竹子和石灰石制造电解质溶液的催化剂的作用。这项研究的初始阶段始于高能量铣削(HEM)过程,将竹材料的大小降低到纳米尺寸。此外,竹子和石灰石溶解在水中,比为1:1。所使用的电极是铝和铜。姜黄用作催化剂,并增加原子数。比较竹子,石灰与姜黄1:1:1。石灰石通过激活偶极力并具有结晶特性,溶解在离子中。测试结果表明,与姜黄混合之前,由竹子和石灰石材料产生的电压为508 mV。此外,姜黄的添加产生的电压为1631 mV。
22.附件 15 — 航空信息服务中的现行标准以产品为中心,不提供数字数据交换所需的规范。过渡到 AIM 的核心要素是原子数据元素在字段名称、字段类型和字段定义方面的精确标准化。这将以标准航空数据字典(也称为元数据注册表)的形式提供。此外,需要根据特征、属性和关联定义字段的标准结构化分组。这将以航空信息的标准概念模型的形式提供。最后,需要商定维护数据集的机制,使之在不同组件之间保持最新。这将以航空数据的标准交换模型的形式提供。这些模型的演变将在全球范围内组织,以确保服务的连续性,同时考虑到创新和新要求。
(ii) 米:一米是光在 1/299792458 秒的时间间隔内在真空中行进的距离。 (iii) 秒:一秒是铯-133 原子经历 9192631770 次振动所需的时间。 (iv) 开尔文:一开尔文等于水的临界点热力学温度的 1/273.15。 (v) 安培:一安培是当电流流过两根长平行导线时,每根导线的长度等于一米,在自由空间中相隔一米,两根导线之间会产生 2×10 7 N 的力。 (vi) 坎德拉:一坎德拉是光源在给定方向上的发光强度,该光源发射频率为 540 × 10 12 Hz 的单色辐射,其辐射强度为每立体角 1/683 瓦。 (vii) 摩尔:一摩尔是任何物质的量,其所含的基本单位可能与 0.012 千克 C-12 碳同位素中的原子数相同。
摘要。在两级原子的合奏中,可以用集体自旋描述,可以使用纠缠状态来增强干涉精度测量的灵敏度。非高斯旋转状态可以产生比自旋方形高斯状态更大的量子增强,但它们的使用需要测量可观察到的旋转三个成分的非线性函数。在本文中,我们制定了使用非线性单轴扭曲的哈密顿量产生的非高斯状态实现最佳量子增强的策略,并表明测量后交互作用技术在量子参数估计方案中扩大输出信号已知,在量子参数估计方案中扩大了效果,在量子估计方案中具有效率。包括来自原子实验的相关退积过程的存在,我们可以通过分析确定非高斯过度斑点状态的量子增强,这是任意原子数的噪声参数的函数。