钙钛矿氧化物中的氧空位迁移和排序使得能够通过改变阳离子氧化态和晶格来操纵材料特性。在薄膜中,氧空位通常排列成等距平面。本文表明,如果机械纳米探针限制了空位产生的化学晶格膨胀,平面二维对称性就会被破坏。使用原位扫描透射电子显微镜,可以在局部机械应变下的电压脉冲过程中对外延 La 2/3 Sr 1/3 MnO 3– δ 薄膜中从钙钛矿结构到 3D 空位有序相的转变进行成像。这种前所未见的排序模式由扭曲的氧四面体、五面体和八面体的复杂网络组成,它们共同产生波纹原子结构,晶格常数在 3.5 到 4.6 Å 之间变化。巨大的晶格畸变对应变变化反应灵敏,为由电压驱动和应变控制的非挥发性纳米级物理特性控制提供了前景。
理解和预测无机材料的特性对于加速材料科学和驱动能源,电子及其他方面的应用程序至关重要。通过多模式大语言模型(LLMS)将材料结构数据与基于语言的信息集成在一起,从而通过增强人类–AI相互作用为支持这些努力提供了巨大的潜力。但是,一个关键挑战在于将原子结构完全分辨到LLMS中。在这项工作中,我们引入了MatterChat,这是一种多功能结构感知的多模式LLM,将材料结构数据和文本输入统一为单个粘性模型。MatterChat采用桥接模块来有效地将预验证的机器学习间的原子势与验证的LLM保持一致,从而降低了培训成本并提高了灵活性。我们的结果表明,MatterChat显着提高了材料性质预测和人类相互作用的性能,超过了GPT-4等通用LLM。我们还证明了它在更先进的科学推理和逐步材料合成等应用中的有用性。
已准备就绪,例如感应,通信和信息处理。可以通过光纤网络在局部量子节点之间分配信息,在局部量子节点之间分配信息,可以通过在局部量子节点之间分配信息来实现。 最近还开发了按需光子生成,存储,开关和多路复用的方案,并承诺要克服对高带宽,低损耗和容错的需求所带来的一些挑战。 然而,在实现量子网络组件和光纤之间的无缝,低损坏,无对齐的集成方面仍然存在重大挑战。 没有一个单个波长可以满足所有Quantum网络功能的需求 - 当前的光子源,量子记忆,光学开关,量子过程,并且探测器涵盖了整个近距离范围至中等范围。 以前的尝试重点是将片上体系结构和原子结构与锥形纳米纤维的evaneScent田进行集成,或者通过光栅耦合器,边缘耦合器和沟渠整合。 甚至已经证明,可以通过将这些方案与纤维内腔整合在一起来增强这些方案。 但是,这些系统中自由空间激光组件的可伸缩性仍然是一个问题。 微结构光纤为克服其中的一些挑战提供了有希望的途径。 与常规的光纤不同,其中光在Sil- 中引导。最近还开发了按需光子生成,存储,开关和多路复用的方案,并承诺要克服对高带宽,低损耗和容错的需求所带来的一些挑战。然而,在实现量子网络组件和光纤之间的无缝,低损坏,无对齐的集成方面仍然存在重大挑战。没有一个单个波长可以满足所有Quantum网络功能的需求 - 当前的光子源,量子记忆,光学开关,量子过程,并且探测器涵盖了整个近距离范围至中等范围。以前的尝试重点是将片上体系结构和原子结构与锥形纳米纤维的evaneScent田进行集成,或者通过光栅耦合器,边缘耦合器和沟渠整合。甚至已经证明,可以通过将这些方案与纤维内腔整合在一起来增强这些方案。但是,这些系统中自由空间激光组件的可伸缩性仍然是一个问题。微结构光纤为克服其中的一些挑战提供了有希望的途径。与常规的光纤不同,其中光在Sil-
细菌 MCC 的原子结构已通过 X 射线晶体学使用在大肠杆菌中表达的带有 His 标签的重组铜绿假单胞菌 MCC (PaMCC rec) 进行解析。22 。PaMCC rec 亚基寡聚化为十二聚体复合物,其核心由六个 β 亚基组成,中间夹着两个 α 三聚体,形成 α 6 β 6 结构 22 。MCC 是否可能以其他形式存在尚不清楚。尽管如此,它们的超分子组装是根据负染色电子显微镜观察到的无色杆菌 IVS MCC 的杆状聚集体推测的 23 。低温电子显微镜 (cryoEM) 的最新进展揭示了意想不到的酶聚合模式,并阐明了此类结构形式的调控作用 24–29 。例如,高分辨率低温电子显微镜结构阐明了几种真核 ACC 30 丝状形式的调控功能。由于缺乏天然 MCC 酶的高分辨率结构,天然 MCC 是否能类似地形成超分子组装体仍未确定。
Kate Reidy 目前是麻省理工学院材料科学与工程专业的博士候选人和 MITei 研究员,在 Frances M. Ross 教授的指导下工作。她在爱尔兰都柏林圣三一学院获得了纳米科学、物理学和先进材料化学学士学位。她的研究采用“自下而上”的方法进行纳米级设计,通过了解和操纵材料的原子结构来调整材料特性。她开发了超高真空和环境原位透射电子显微镜 (UHV-TEM 和 ETEM) 方法,这些方法提供高空间和时间分辨率,以阐明原子尺度上的动力学生长机制、化学成分和对刺激的反应。她的工作得到了麻省理工学院工程学院 William Asbjornsen Albert 奖学金、麻省理工学院能源计划奖学金、MathWorks 工程奖学金和麻省理工学院 Lemelson-Vest 学生创新奖的认可。在实验室之外,她担任麻省理工学院研究生院 (DCGS) 的代表,帮助重新设计研究生核心课程,并担任麻省理工学院材料科学女性和性别少数群体 (WXOMS) 董事会成员。
图2。(a)菱形CR 2 S 3纳米片的原子结构。在参考文献50的许可下复制。版权所有2019,美国化学学会。50(b)六边形CRSE纳米晶体的原子模型。经参考文献52的许可。版权所有2019。Wiley-Vch。52(c)三角形Cr 5 te 8片的结构模型。在参考文献58的许可下复制。版权2021。Wiley-Vch。58(d)沿[001]方向模拟菱形和三角形Cr 2 s 3的茎图像。比例尺:0.5 nm。经参考41的许可重复。版权所有2019。Wiley-Vch。41(e)CRSE 2,R-CR 2 SE 3,T-CR 2 SE 3的模拟茎图像和强度线轮廓,并沿[001]方向进行CRSE。比例尺:1 nm。经参考40的许可重复。版权所有2021,施普林格。40(f-g)分别模拟三角形和单斜cr 5 te 8的茎图像和强度线谱。经参考53的许可重现。版权所有2022,Springer性质。53
CHEM-210 综合化学 4 学分 本课程旨在为从未接触过化学的初学者提供一般化学、有机化学和生物化学的基本概述。将讨论以下主题:物质和能量、原子理论、化学计量学、命名法、元素周期表、原子结构、气液和固态、溶液、核化学、功能团、烷烃、烯烃、醇、醚、醛、酮、胺、羧酸、脂质、碳水化合物、氨基酸、蛋白质、核酸、代谢和呼吸、光合作用、转录、翻译、动力学和 DNA 复制。完成本综合化学课程后,学生将了解化学研究中至关重要的基本原理,熟练掌握化学计量学(与护理学科相关),编写和解释化学公式,DNA 复制、转录和翻译。此外,学生应该认识到化学在其他学科中的重要性。 (满足 RN 至 BSN 学生的化学要求;满足专业研究学生的科学/实验室要求)。(专业研究学院课程)。通常开设学期:秋季和春季。
摘要:信息技术的快速进步增强了人们对互补设备和电路的兴趣。常规的P型半导体通常缺乏足够的电性能,从而促使人们寻找具有高孔迁移率和长期稳定性的新材料。元素柜(TE)具有一维手性原子结构,由于其狭窄的带隙,高孔迁移率和在工业应用中的多功能性,尤其是在电子产品和可再生能源方面,因此出现了有前途的候选人。本评论重点介绍了纳米结构和相关设备的最新进展,重点是合成方法,包括蒸气沉积和水热合成,它们产生了纳米线,纳米棒和其他纳米结构。在光电探测器,气体传感器和能源收集设备中的关键应用被引起了人们的注意,并特别强调了它们在物联网(IoT)框架(IoT)框架中的作用,这是一个快速增长的领域,正在重塑我们的技术环境。也突出显示了基于TE的技术的前景和潜在应用。
1。Wang,d。,Tai,P.W.L。 和gao,g。 (2019)腺相关病毒载体作为基因治疗递送的平台。 nat Rev Drug Discov 18,358-378。 2。 Jay,F.T。,Lughlin,C.A。 和Carter,B.J。 (1981)真核转化控制:腺相关的病毒蛋白合成受腺病毒DNA结合蛋白突变的影响。 Proc Natl Acad Sci U S A 78,2927-2931。 3。 Srivastava,A。,Lusby,E.W。 和Berns,K.I。 (1983)腺苷相关病毒2基因组的核苷酸序列和组织。 J Virol 45,555-564。 4。 Johnson,F.B。,Ozer,H.L。 和Hoggan,M.D。 (1971)腺病毒相关病毒的结构蛋白3. J Virol 8,860-863。 5。 Rose,J.A。,Maizel,J.V。,Inman,J.K。 和Shatkin,A.J。 (1971)腺病毒相关病毒的结构蛋白。 J Virol 8,766-770。 6。 Snijder,j。,van de Waterbeemd,m。,Damoc,e。,Denisov,e。,Grinfeld,d。,Bennett,A。,Agbandje-McKenna,M。,Makarov,A。 和Heck,A.J。 (2014)通过Orbitrap质谱定义了病毒和细菌纳米颗粒的化学计量和货物负荷。 J Am Chem Soc 136,7295-7299。 7。 xie,q。,bu,w。,bhatia,s。,hare,j。,somasundaram,t。,azzi,a。 和Chapman,M.S。 (2002)腺相关病毒(AAV-2)的原子结构,人类基因治疗的载体。 Proc Natl Acad Sci U S A 99,10405-10410。 8。 和Agbandje-Mckenna,m。Wang,d。,Tai,P.W.L。和gao,g。(2019)腺相关病毒载体作为基因治疗递送的平台。nat Rev Drug Discov 18,358-378。2。Jay,F.T。,Lughlin,C.A。 和Carter,B.J。 (1981)真核转化控制:腺相关的病毒蛋白合成受腺病毒DNA结合蛋白突变的影响。 Proc Natl Acad Sci U S A 78,2927-2931。 3。 Srivastava,A。,Lusby,E.W。 和Berns,K.I。 (1983)腺苷相关病毒2基因组的核苷酸序列和组织。 J Virol 45,555-564。 4。 Johnson,F.B。,Ozer,H.L。 和Hoggan,M.D。 (1971)腺病毒相关病毒的结构蛋白3. J Virol 8,860-863。 5。 Rose,J.A。,Maizel,J.V。,Inman,J.K。 和Shatkin,A.J。 (1971)腺病毒相关病毒的结构蛋白。 J Virol 8,766-770。 6。 Snijder,j。,van de Waterbeemd,m。,Damoc,e。,Denisov,e。,Grinfeld,d。,Bennett,A。,Agbandje-McKenna,M。,Makarov,A。 和Heck,A.J。 (2014)通过Orbitrap质谱定义了病毒和细菌纳米颗粒的化学计量和货物负荷。 J Am Chem Soc 136,7295-7299。 7。 xie,q。,bu,w。,bhatia,s。,hare,j。,somasundaram,t。,azzi,a。 和Chapman,M.S。 (2002)腺相关病毒(AAV-2)的原子结构,人类基因治疗的载体。 Proc Natl Acad Sci U S A 99,10405-10410。 8。 和Agbandje-Mckenna,m。Jay,F.T。,Lughlin,C.A。和Carter,B.J。(1981)真核转化控制:腺相关的病毒蛋白合成受腺病毒DNA结合蛋白突变的影响。Proc Natl Acad Sci U S A 78,2927-2931。3。Srivastava,A。,Lusby,E.W。和Berns,K.I。(1983)腺苷相关病毒2基因组的核苷酸序列和组织。J Virol 45,555-564。4。Johnson,F.B。,Ozer,H.L。 和Hoggan,M.D。 (1971)腺病毒相关病毒的结构蛋白3. J Virol 8,860-863。 5。 Rose,J.A。,Maizel,J.V。,Inman,J.K。 和Shatkin,A.J。 (1971)腺病毒相关病毒的结构蛋白。 J Virol 8,766-770。 6。 Snijder,j。,van de Waterbeemd,m。,Damoc,e。,Denisov,e。,Grinfeld,d。,Bennett,A。,Agbandje-McKenna,M。,Makarov,A。 和Heck,A.J。 (2014)通过Orbitrap质谱定义了病毒和细菌纳米颗粒的化学计量和货物负荷。 J Am Chem Soc 136,7295-7299。 7。 xie,q。,bu,w。,bhatia,s。,hare,j。,somasundaram,t。,azzi,a。 和Chapman,M.S。 (2002)腺相关病毒(AAV-2)的原子结构,人类基因治疗的载体。 Proc Natl Acad Sci U S A 99,10405-10410。 8。 和Agbandje-Mckenna,m。Johnson,F.B。,Ozer,H.L。和Hoggan,M.D。(1971)腺病毒相关病毒的结构蛋白3.J Virol 8,860-863。5。Rose,J.A。,Maizel,J.V。,Inman,J.K。 和Shatkin,A.J。 (1971)腺病毒相关病毒的结构蛋白。 J Virol 8,766-770。 6。 Snijder,j。,van de Waterbeemd,m。,Damoc,e。,Denisov,e。,Grinfeld,d。,Bennett,A。,Agbandje-McKenna,M。,Makarov,A。 和Heck,A.J。 (2014)通过Orbitrap质谱定义了病毒和细菌纳米颗粒的化学计量和货物负荷。 J Am Chem Soc 136,7295-7299。 7。 xie,q。,bu,w。,bhatia,s。,hare,j。,somasundaram,t。,azzi,a。 和Chapman,M.S。 (2002)腺相关病毒(AAV-2)的原子结构,人类基因治疗的载体。 Proc Natl Acad Sci U S A 99,10405-10410。 8。 和Agbandje-Mckenna,m。Rose,J.A。,Maizel,J.V。,Inman,J.K。和Shatkin,A.J。(1971)腺病毒相关病毒的结构蛋白。J Virol 8,766-770。6。Snijder,j。,van de Waterbeemd,m。,Damoc,e。,Denisov,e。,Grinfeld,d。,Bennett,A。,Agbandje-McKenna,M。,Makarov,A。和Heck,A.J。(2014)通过Orbitrap质谱定义了病毒和细菌纳米颗粒的化学计量和货物负荷。J Am Chem Soc 136,7295-7299。7。xie,q。,bu,w。,bhatia,s。,hare,j。,somasundaram,t。,azzi,a。和Chapman,M.S。(2002)腺相关病毒(AAV-2)的原子结构,人类基因治疗的载体。Proc Natl Acad Sci U S A 99,10405-10410。8。和Agbandje-Mckenna,m。Govindasamy,L。,Padron,e。,McKenna,R.,Muzyczka,n。,Kaludov,n。,Chiorini,J.A。(2006)在结构上绘制腺相关病毒血清型4的多种表型。J Virol 80,11556-11570。9。tse,l.v。,Klinc,K.A。,Madigan,V.J。,Castellanos Rivera,R.M。,Wells,L.F。,Havlik,L.P。,Smith,J.K。和Asokan,a。(2017)结构引导的抗原不同的腺相关病毒变体用于免疫逃避。Proc Natl Acad Sci U S 114,E4812-E4821。10。Chan,K.Y。,Jang,M.J。,Yoo,B.B.,Greenbaum,A。Chan,K.Y。,Jang,M.J。,Yoo,B.B.,Greenbaum,A。
研究极端微生物是寻找其他行星上潜在生物特征的关键 Voit, S., Koehler, S., Biondi, T., Gleasner, C., Hovde, B., Roybal, C., Freeman, M., Gunthoti, K., Wender, S., Gasda, P., Ollila, A., Leggett, C., Clegg, S., Sklute, E. 和 Ganguly, K*。洛斯阿拉莫斯国家实验室 (LANL),新墨西哥州 87545 (*kumkum@lanl.gov) 简介:NASA 的行星探索主要集中于研究地外有机分子。从这个角度来看,火星地下极其有趣 [1]。使用对有机分子高度敏感的时间分辨激光诱导荧光光谱 (TR-LIF) 研究特征可能有助于寻找这些特征。我们假设,暴露在火星的恶劣环境和电离辐射下会导致氧化事件,从而改变富含有机物的样品中的原子结构,例如 DNA 甲基化和蛋白质羰基化。表征和解释这些复杂、改变的样品的特征是一项巨大的挑战。为了实现这一目标,我们通过表征一系列可能持续不同时间的生物材料来寻找潜在的生物特征,或者是