Loading...
机构名称:
¥ 1.0

已准备就绪,例如感应,通信和信息处理。可以通过光纤网络在局部量子节点之间分配信息,在局部量子节点之间分配信息,可以通过在局部量子节点之间分配信息来实现。 最近还开发了按需光子生成,存储,开关和多路复用的方案,并承诺要克服对高带宽,低损耗和容错的需求所带来的一些挑战。 然而,在实现量子网络组件和光纤之间的无缝,低损坏,无对齐的集成方面仍然存在重大挑战。 没有一个单个波长可以满足所有Quantum网络功能的需求 - 当前的光子源,量子记忆,光学开关,量子过程,并且探测器涵盖了整个近距离范围至中等范围。 以前的尝试重点是将片上体系结构和原子结构与锥形纳米纤维的evaneScent田进行集成,或者通过光栅耦合器,边缘耦合器和沟渠整合。 甚至已经证明,可以通过将这些方案与纤维内腔整合在一起来增强这些方案。 但是,这些系统中自由空间激光组件的可伸缩性仍然是一个问题。 微结构光纤为克服其中的一些挑战提供了有希望的途径。 与常规的光纤不同,其中光在Sil- 中引导。最近还开发了按需光子生成,存储,开关和多路复用的方案,并承诺要克服对高带宽,低损耗和容错的需求所带来的一些挑战。然而,在实现量子网络组件和光纤之间的无缝,低损坏,无对齐的集成方面仍然存在重大挑战。没有一个单个波长可以满足所有Quantum网络功能的需求 - 当前的光子源,量子记忆,光学开关,量子过程,并且探测器涵盖了整个近距离范围至中等范围。以前的尝试重点是将片上体系结构和原子结构与锥形纳米纤维的evaneScent田进行集成,或者通过光栅耦合器,边缘耦合器和沟渠整合。甚至已经证明,可以通过将这些方案与纤维内腔整合在一起来增强这些方案。但是,这些系统中自由空间激光组件的可伸缩性仍然是一个问题。微结构光纤为克服其中的一些挑战提供了有希望的途径。与常规的光纤不同,其中光在Sil-

朝着自动驾驶汽车的远程3D对象检测

朝着自动驾驶汽车的远程3D对象检测PDF文件第1页

朝着自动驾驶汽车的远程3D对象检测PDF文件第2页

朝着自动驾驶汽车的远程3D对象检测PDF文件第3页

朝着自动驾驶汽车的远程3D对象检测PDF文件第4页

朝着自动驾驶汽车的远程3D对象检测PDF文件第5页

相关文件推荐

2024 年
¥1.0