Loading...
机构名称:
¥ 1.0

教授sasikumar.b@gmail.com和naveenmeti9353@gmail.com摘要:图像识别,增强现实,自动驾驶和监视的申请,这对这项计算机视觉至关重要。在这个项目中,使用复杂的深度学习技术来完成Python中检测到的事情。它使用预训练的卷积(CNN)模型使用神经网络,在图片或视频供稿中使用Yolo(仅查看一次)或SSD(单拍的多伯克斯检测器)来定位和识别事物。使用Pytorch和Tensor Flow等流行的库,使用thepython编程语言开发,训练和实现此副本时。用于处理传入数据的预处理程序,使用带注释的数据集的模型培训以及对新鲜照片或视频帧的推断都包含在实施中。此外,该项目还研究了如何加速推理,以便实时应用可以使用它。对象识别系统进行评估需要计算重要的性能度量,例如F1得分,回忆和精度。结果表明,在各种情况下,模型能够定位和识别项目。这项工作增加了扩展的机器视觉,并提供了一份有用的手册,用于利用Python实现感情对象。实现的模块化和灵活的设计使对于不同的用例和数据集修改变得易于修改。该项目的结果证明了在实际用途中进行更多突破的可能性,鼓励在包括图像处理,自主系统和监视的领域创新。关键字:Yolo

对象检测

对象检测PDF文件第1页

相关文件推荐

2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0