近年来,自动驾驶汽车的发展迅速发展,这是由于人工智能和深度学习的进步所推动。这些技术正在彻底改变车辆如何感知和与周围环境相互作用,从而为更安全,更有效的运输系统奠定了基础。自动驾驶汽车依靠传感器,相机和计算模型的复杂相互作用来实时解释其环境。在这些组件中,对象检测起着关键作用,充当车辆的“眼睛”,以识别和应对障碍,交通状况和道路信号。这些系统的安全性和效率的关键组成部分是实时对象检测,它可以准确地识别和定位必需物体,例如行人,车辆,车辆,车辆,交通范围,以及动态驾驶的环境,以及动态的环境,以及一个动态驾驶。但是,挑战在于在高度动态和不可预测的道路条件下达到速度和准确性。传统的计算机视觉技术通常很难满足实时处理的需求,从而导致延迟或错过的检测,这可能会危及乘客安全性。这项研究通过引入基于Yolov8的深度学习模型来解决这些问题,专门针对对象检测的速度和准确性进行了优化。Yolov8代表“您只看一次”(Yolo)系列的下一代,该系列以其效率和实时性能而闻名。在各种城市和农村场景中进行的广泛模拟表明,Yolov8的表现优于Alexnet,Densenet,Vggnet,Igcnet和Resnet等建筑。具体来说,它的精度为81.98%(至少比其他模型高1.94%),同时还显示了更快的处理时间。这项研究强调了YOLOV8提供的检测效率和可靠性的实质性提高,增强了其适合于增强自动驾驶汽车系统安全性和可靠性的可靠性。通过解决实时对象检测中的关键挑战,这项研究促进了使自动驾驶汽车成为更安全,更实用的替代方案的更广泛目标。
主要关键词