摘要 多发性硬化症 (MS) 是一种脑部疾病,会导致视觉、感觉和运动问题,并对神经系统功能产生不利影响。为了诊断 MS,迄今为止已提出了多种筛查方法;其中,磁共振成像 (MRI) 引起了医生的极大关注。MRI 模式为医生提供了有关大脑结构和功能的基本信息,这对于快速诊断 MS 病变至关重要。使用 MRI 诊断 MS 既费时又繁琐,而且容易出现人为错误。基于人工智能 (AI) 的计算机辅助诊断系统 (CADS) 诊断 MS 的实施研究涉及传统机器学习和深度学习 (DL) 方法。在传统的机器学习中,特征提取、特征选择和分类步骤是通过反复试验进行的;相反,DL 中的这些步骤基于深层,其值是自动学习的。本文全面回顾了使用 DL 技术与 MRI 神经成像模式执行的自动 MS 诊断方法。首先,研究了使用 MRI 模式和 DL 技术进行 MS 诊断的各种 CADS 所涉及的步骤。分析了各种工作中采用的重要预处理技术。介绍了大多数关于使用 MRI 模式和 DL 进行 MS 诊断的已发表论文。还提供了使用 MRI 模式和 DL 技术自动诊断 MS 面临的最大挑战和未来方向。
主要关键词