Loading...
机构名称:
¥ 1.0

功能性脑活动的准确定位具有希望使我们老龄化社会至关重要的新型治疗和辅助技术。世界人口的老龄化增加了与年龄有关的健康问题的患病率,例如身体伤害,精神障碍和中风,导致对患者,家庭和医疗保健系统的严重后果。新兴技术可以通过(i)提供有效的神经居住以及(ii)实现日常任务独立性来改善患者的生活质量。第一个挑战可以通过设计可以增强特定认知功能或治疗特定精神病/神经病理性的神经调节性接口系统来解决。这种系统可以由实时大脑活动驱动,以使用诸如经颅磁刺激[1、2]或聚焦超声[3,4]等方法选择性地调节特定的神经动力学。第二个挑战可以通过设计有效的脑机界面(BMI)来解决。常见的BMI控制信号依赖于主感觉或运动相关的激活。但是,这些信号仅反映了有限的认知过程。高阶认知信号,尤其是编码面向目标任务的前额叶皮层的高级认知信号,可能会导致更健壮和直观的BMI [5,6]。NeuroRehabicitation和BMI方法都需要一种实时测量和定位功能性脑活动的有效方法。这可以通过脑电图(EEG)[7,8]和MEG [9-11],两种非侵入性电物质技术技术来实现。eeg使用放置在头皮上的一系列电极来记录电压弹性,而MEG使用称为超导量的Quantum-tum干扰装置(Squid)[12]的敏感磁性检测器来测量在EEG中产生电势分布的相同主要电流。由于EEG和MEG捕获了由神经元电流产生的电磁场,因此它们提供了神经元活性的快速直接指数。但是,现有的MEG/EEG来源定位方法提供了有限的空间分辨率,使可以用于神经康复或BMI的信号的起源混淆,或者太慢而无法实时计算。深度学习(DL)[13]提供了一种有希望的新方法,可以实时改善源本地化。越来越多的作品成功地将DL运用到

MEG通过深度学习

MEG通过深度学习PDF文件第1页

MEG通过深度学习PDF文件第2页

MEG通过深度学习PDF文件第3页

MEG通过深度学习PDF文件第4页

MEG通过深度学习PDF文件第5页