摘要已开发了不对称扩展源隧道场效应晶体管(AES-TFET)的二维分析模型,以获得更好的设备性能。已通过求解2-D Poisson的方程来分析并执行所提出的设备模型。表面电势分布,电场变化和带对频带隧道(BTBT)速率已通过此数值建模研究。TFET新颖结构的源区域已扩展(不同的2 nm至6 nm),以结合角效应,从而通过薄薄的隧道屏障进行了BTBT,并具有受控的双极传导。这最终为N通道AES-TFET产生了更好的源通道接口隧道。2-D数值设备模拟器(Silvaco TCAD)已用于模拟工作。最终通过AES-TFET的分析建模来验证模拟工作。更好的是,我关闭和切换比是从这个新颖的TFET结构中获得的。关键字AES-TFET·表面电势分布·电场变化·BTBT·TCAD·数值建模。1介绍纳米科学和纳米技术在纳米级设备中的出现,晶体管的物理大小已被绝对地缩小。通过遵循2022年摩尔的法律预测,微型化已达到其对金属氧化物施加效应晶体管(MOSFET)的极限[1]。在这方面,过去二十年中已经出现了各种扩展问题。短通道效应(SCE),排水诱导的屏障降低(DIBL)[2]。 ritam dutta ritamdutta1986@gmail.com短通道效应(SCE),排水诱导的屏障降低(DIBL)[2]。ritam dutta ritamdutta1986@gmail.com为了克服这些问题,在新型MOSFET结构中正在进行持续的研究。但是,在目前的情况下,在60mv/十年的MOSFET上有限的子阈值摇摆(SS)是研究人员的主要缺点。
摘要在本文中,已经开发了不对称高架源隧道场效应晶体管(AES-TFET)的二维分析模型,以获得更好的隧道连接装置性能。基于设备物理学的分析建模是通过求解2-d poisson方程进行的。表面电势分布,电场变化和带对波段隧道(B2B)的速率已通过此数值建模研究。在我们提出的结构中,来源已升高(不同的2 nm至6 nm)以融合角效应。这可以通过薄隧道屏障进行载体运输,并具有控制的双极传导。这最终为N通道AES-TFET结构产生更好的源通道界面隧道。2-D数值设备模拟器(Silvaco TCAD)已用于模拟工作。模拟图形表示最终通过AES-TFET的分析建模验证。关键字AES-TFET·表面电势分布·电场变化·B2B隧道·TCAD·数值建模。1介绍纳米科学和纳米技术在纳米级设备中的出现,晶体管的物理大小已被绝对地缩小。通过遵循2022年摩尔的法律预测,微型化已达到其对金属氧化物施加效应晶体管(MOSFET)的极限[1]。在这方面,过去二十年中已经出现了各种扩展问题。短通道效应(SCE),排水诱导的屏障降低(DIBL)[2]。 为了克服这些问题,在新型MOSFET结构中正在进行持续的研究。短通道效应(SCE),排水诱导的屏障降低(DIBL)[2]。为了克服这些问题,在新型MOSFET结构中正在进行持续的研究。但是,在目前的情况下,在60mv/十年的MOSFET上有限的子阈值摇摆(SS)是研究人员的主要缺点。ritam dutta ritamdutta1986@gmail.com
摘要已开发了不对称扩展源隧道场效应晶体管(AES-TFET)的二维分析模型,以获得更好的设备性能。已通过求解2-D Poisson的方程来分析并执行所提出的设备模型。表面电势分布,电场变化和带对频带隧道(BTBT)速率已通过此数值建模研究。TFET新颖结构的源区域已扩展(不同的2 nm至6 nm),以结合角效应,从而通过薄薄的隧道屏障进行了BTBT,并具有受控的双极传导。这最终为N通道AES-TFET产生了更好的源通道接口隧道。2-D数值设备模拟器(Silvaco TCAD)已用于模拟工作。最终通过AES-TFET的分析建模来验证模拟工作。更好的是,我关闭和切换比是从这个新颖的TFET结构中获得的。
摘要:提出了一个分析子阈值摇摆(SS)模型,以观察当堆叠的SIO 2-中的FERROCTRIC结构用作无连接双门(JLDG)MOSFET的氧化物膜时,SS的变化。60 mV/dec的SS对于在保持晶体管性能的同时减少功率耗散至关重要。如果使用具有负电容(NC)效应的铁电材料,则可以将SS降低到60 mV/dec以下。使用2D电势分布,SS与从漏极电流和栅极之间的关系得出的SS相吻合。作为分析SS模型得出的结果,发现通过调节硅频道,SIO 2和铁电的厚度,也可以在15 nm通道长度下获得60 mV/dec的SS。,随着SIO 2的厚度的增加,SS根据铁电厚度的变化饱和,并且随着硅通道的厚度减小,几乎是恒定的。
当不对称连接双门MOSFET制造为SIO 2 /High-K介电堆积的栅极氧化物时,研究了开关电流比的变化。高介电材料具有降低短通道效应的优势,但是由于带偏移的偏移量减少和使用硅的界面性能较差,栅极寄生电流的上升已成为一个问题。为了克服这一缺点,使用了堆叠的氧化膜。电势分布是从柱道方程式获得的,阈值电压是从第二个衍生方法计算得出的,以获取循环。结果,该模型与其他论文的结果一致。随着高介电材料的介电性的增加,开关电流比率增加,但在20或更多的相对介电常数下饱和。开关电流比与上和下高介电材料厚度的算术平均值成比例。SIO 2显示了10 4或更低的开关电流比率,但TIO 2(K = 80)的On-Own电流比增加到10 7或更多。
在本研究中,我们提出了一个新的开源模拟平台,该平台包含计算机辅助设计和计算机辅助工程工具,用于高度自动化地评估深部脑刺激 (DBS) 期间的电场分布和神经激活。它将展示如何使用 Python 控制的算法构建和检查体积导体模型 (VCM),以生成、离散化和自适应网格细化计算域,以及结合组织的异质和各向异性属性和分配神经元模型。通过一组预定义的输入设置和快速可视化例程,可以方便地使用该平台。通过与商业软件进行比较,评估了由该平台创建和优化的 VCM 的准确性。结果表明,电势分布模型之间没有显著偏差。对 VCM 不同物理的定性估计与以前的计算研究一致。所提出的计算平台适用于在科学建模研究中准确估计 DBS 期间的电场。未来,我们打算获得 SDA 和 EMA 的批准。成功整合由内部开发的算法控制的开源软件,提供了高度自动化的解决方案。该平台允许进行优化和不确定性量化 (UQ) 研究,而开源软件的使用则有助于模拟的可访问性和可重复性。
功能性脑活动的准确定位具有希望使我们老龄化社会至关重要的新型治疗和辅助技术。世界人口的老龄化增加了与年龄有关的健康问题的患病率,例如身体伤害,精神障碍和中风,导致对患者,家庭和医疗保健系统的严重后果。新兴技术可以通过(i)提供有效的神经居住以及(ii)实现日常任务独立性来改善患者的生活质量。第一个挑战可以通过设计可以增强特定认知功能或治疗特定精神病/神经病理性的神经调节性接口系统来解决。这种系统可以由实时大脑活动驱动,以使用诸如经颅磁刺激[1、2]或聚焦超声[3,4]等方法选择性地调节特定的神经动力学。第二个挑战可以通过设计有效的脑机界面(BMI)来解决。常见的BMI控制信号依赖于主感觉或运动相关的激活。但是,这些信号仅反映了有限的认知过程。高阶认知信号,尤其是编码面向目标任务的前额叶皮层的高级认知信号,可能会导致更健壮和直观的BMI [5,6]。NeuroRehabicitation和BMI方法都需要一种实时测量和定位功能性脑活动的有效方法。这可以通过脑电图(EEG)[7,8]和MEG [9-11],两种非侵入性电物质技术技术来实现。eeg使用放置在头皮上的一系列电极来记录电压弹性,而MEG使用称为超导量的Quantum-tum干扰装置(Squid)[12]的敏感磁性检测器来测量在EEG中产生电势分布的相同主要电流。由于EEG和MEG捕获了由神经元电流产生的电磁场,因此它们提供了神经元活性的快速直接指数。但是,现有的MEG/EEG来源定位方法提供了有限的空间分辨率,使可以用于神经康复或BMI的信号的起源混淆,或者太慢而无法实时计算。深度学习(DL)[13]提供了一种有希望的新方法,可以实时改善源本地化。越来越多的作品成功地将DL运用到
On the Evaluation of Charge Transport and Reaction Kinetics in Z- Scheme Semiconductor Particles for Solar Water Splitting Rohini Bala Chandran, Shane Ardo and Adam Z. Weber © 2017 ECS - The Electrochemical Society ECS Meeting Abstracts, Volume MA2017-02, L02-Photocatalysts, Photoelectrochemical Cells and Solar Fuels 8 Citation Rohini Bala Chandran等人2017年会议。abstr。MA2017-02 1871 DOI 10.1149/MA2017-02/42/1871抽象太阳能分解是一种有前途的方法,可以以稳定的化学键的形式转换和存储太阳能。 在此处考虑,在存在可溶性氧化还原式穿梭的情况下,悬浮在水溶液中的半导体颗粒(光催化剂)的串联粒子 - 悬浮反应器设计1(如图1所示)。 使用设备尺度的数值模型1,我们确定了反应器的设计和光催化剂和氧化还原式班车的浓度,可通过扩散驱动的物种运输产生高达3.8%的太阳能到氢转化效率。 通过自然对流促进物种混合预测,较高的能量转化效率。 在此设计中,每个半导体粒子都被电解质润湿,电解质至少包含四种化学物种,这些化学物质可以参与颗粒表面上的氧化还原反应。 因此,选择性表面催化对于达到高太阳能到氢转化效率至关重要。 在本研究中,我们开发了一个数值模型,以评估球形半导体粒子内以及跨半导体 - 电解质电解质界面的光生电荷接载体的转运和动力学。 Z. 见面。 abstr。MA2017-02 1871 DOI 10.1149/MA2017-02/42/1871抽象太阳能分解是一种有前途的方法,可以以稳定的化学键的形式转换和存储太阳能。在此处考虑,在存在可溶性氧化还原式穿梭的情况下,悬浮在水溶液中的半导体颗粒(光催化剂)的串联粒子 - 悬浮反应器设计1(如图1所示)。使用设备尺度的数值模型1,我们确定了反应器的设计和光催化剂和氧化还原式班车的浓度,可通过扩散驱动的物种运输产生高达3.8%的太阳能到氢转化效率。通过自然对流促进物种混合预测,较高的能量转化效率。在此设计中,每个半导体粒子都被电解质润湿,电解质至少包含四种化学物种,这些化学物质可以参与颗粒表面上的氧化还原反应。因此,选择性表面催化对于达到高太阳能到氢转化效率至关重要。在本研究中,我们开发了一个数值模型,以评估球形半导体粒子内以及跨半导体 - 电解质电解质界面的光生电荷接载体的转运和动力学。Z.见面。abstr。通过与电荷载体传输方程保持一致的泊松玻尔兹曼方程自我来获得粒子内的电势分布。在半导体 - 电解质界面上大多数和少数电荷载体的通量考虑了界面上的所有合理的氧化还原反应。建模结果阐明了反应选择性不仅对动力学参数的依赖性,还阐明了诸如辐照度,工作温度,粒径,重组途径和电解质电解化学电位等变量。结果进一步解释,以确定策略以提高Z-Scheme水分分割系统的能量转换效率。参考文献(1)Chandran,R。B。;布雷恩(Breen); Shao,Y。; Ardo,S。;韦伯,A。2016,MA2016-01(38),1919– 1919年。2016,MA2016-01(38),1919– 1919年。