Loading...
机构名称:
¥ 5.0

深入了解不确定性是做出不确定情况下有效决策的第一步。深度/机器学习 (ML/DL) 已被广泛用于解决处理高维数据的复杂问题。然而,与其他人工智能 (AI) 领域相比,ML/DL 中对推理和量化不同类型的不确定性以实现有效决策的探索要少得多。特别是,自 1960 年代以来,KRR 中就开始研究信念/证据理论,以推理和衡量不确定性,从而提高决策效率。我们发现,只有少数研究利用 ML/DL 中信念/证据理论中成熟的不确定性研究来解决不同类型不确定性下的复杂问题。在这篇综述论文中,我们讨论了几种流行的信念理论及其核心思想,这些思想处理不确定性的原因和类型并对其进行量化,并讨论了它们在 ML/DL 中的适用性。此外,我们还讨论了深度神经网络 (DNN) 中利用信念理论的三种主要方法,包括证据 DNN、模糊 DNN 和粗糙 DNN,以及它们的不确定性原因、类型和量化方法以及它们在不同问题领域的适用性。基于我们的深入调查,我们讨论了当前最先进的桥接信念理论和 ML/DL 的见解、经验教训和局限性,最后讨论了未来的研究方向。

信念理论与深度学习

信念理论与深度学习PDF文件第1页

信念理论与深度学习PDF文件第2页

信念理论与深度学习PDF文件第3页

信念理论与深度学习PDF文件第4页

信念理论与深度学习PDF文件第5页