脑卒中是一种严重的疾病,需要尽快发现才能有效治疗并避免其严重后果。本研究提供了一种基于神经网络的新型脑卒中识别方法。建议的系统利用深度学习技术来评估医学成像数据,特别是磁共振成像 (MRI) 扫描和结构化数据,以便尽早准确地检测与中风相关的问题。该研究的神经网络架构旨在自动识别输入 MRI 图片中的相关元素。该算法通过对包含中风和非中风病例的大量数据集进行训练,学习复杂的模式和暗示中风存在的细微变化。卷积神经网络 (CNNS) 和人工神经网络 (ANN) 用于使模型能够提取具有空间层次结构的特征,从而使模型能够识别数据集中的详细信息。以提高模型的泛化能力。接下来,对中风数据集进行微调,以帮助模型适应中风相关模式的独特特征。为了避免过度拟合,通过使用正则化和复杂的优化技术来增强训练过程。
主要关键词