通过研究中性和离子气体的反应,Lewandowski组及其合作者了解到,分子的形状在化学反应途径和反应的最终产物中显着差异。图片来源:Lewandowski Group/Jila
光学原子钟是我们测量时间和频率的最精确的工具 1 – 3 。通过在不同位置的时钟之间进行精确的频率比较,人们可以探测基本常数的时空变化 4、5 和暗物质的性质 6、7 ,进行大地测量 8 – 10 ,并评估系统时钟偏移。对独立系统的测量受到标准量子极限 (SQL) 的限制;对纠缠系统的测量可以超越 SQL,达到量子理论允许的极限精度——海森堡极限。虽然局部纠缠操作已经在微观距离上证明了这种增强 11 – 16 ,但远程原子钟之间的比较需要在没有内在相互作用的系统之间快速产生高保真度纠缠。使用光子链路 17 , 18,我们将两个相距宏观距离 19(≈ 2 米)的 88 Sr + 离子纠缠在一起,以展示第一个纠缠光钟的量子网络。对于离子之间的频率比较,我们发现纠缠将测量不确定性降低了近 √
原子和离子的捕获和冷却方法对原子钟产生了革命性的影响,因为它们可以减少甚至消除主要的系统频率偏移 [1]、[2]、[3]。捕获原子/离子光学钟的性能比其前代产品提高了几个数量级,并已成为国家计量实验室研究项目的关键组成部分 [4]、[5]。基于捕获离子的连续运行原子钟已经存在了几十年,但迄今为止仅限于地面应用 [6]。本文介绍了 NASA 的深空原子钟 (DSAC),它于 2019 年发射,成为第一台在太空中运行的捕获离子原子钟 [7]。DSAC 的设计不包括低温技术、灵敏的微波腔或激光器。相反,它在接近室温的温度下运行,使用简单的行波微波元件,并使用等离子体放电深紫外光源。这些元件都具有很高的成熟度和强大的可操作性,使其能够发射到太空并在太空中运行。在地面上,DSAC 展示了 1.5x10 -13 /t 1/2 的短期分数频率稳定度 [8]。在太空中,它运行了 2 年,实现了每秒 1.5x10 -13 的分数频率稳定度,超过一天的平均时间的长期稳定性为 3x10 -15,23 天内的时间偏差仅为 4 纳秒(未消除漂移),估计漂移为每天 3.0(0.7)x10 -16。在目前使用的最稳定的空间时钟中,每个时钟都建立了至少一个数量级的新空间时钟性能标准 [9],[10],[11]。由于对辐射、温度和磁场变化的敏感度低,DSAC 时钟也适用于太空环境。预计这种级别的空间时钟性能将实现单向导航,即在现场测量信号延迟时间,从而实现近实时深空探测器导航 [12 ] 。在本文中,我们将描述 DSAC 在太空中的性能及其环境敏感性、该技术的主要应用以及未来发展方向。
众所周知,全球导航卫星系统 (GNSS) 如全球定位系统 (GPS) 可以提供优于 40 纳秒的 UTC 同步。然而,只有配备校准接收机的静止平台才能达到这一极限。对于移动平台,GNSS 提供的时间基准受更多系统性因素影响,包括服务可用性和可靠性。此外,越来越多的平台需要高精度惯性导航,而 GNSS 并不是一个可选项。这类平台的例子有潜艇和深空任务。最后但并非最不重要的是,高度可靠和精确的时间基准可用于升级 GNSS 星座卫星上的现有设施。自主时间基准生成的关键因素是振荡器,它可以提供固有的高稳定性(一年 1 μ s 或 3 × 10 − 14 的相对不稳定性 [ 1 ])。目前,只有氢原子钟才能达到这种性能,氢原子钟确实已经小型化,并构成了伽利略欧洲全球导航卫星系统卫星上的主要时基生成。目前,冷原子原子钟在全球多家计量机构中实现了最精确的主频率标准 [ 2 ],并且由于 PHARAO 时钟 [ 3 ],它还将出现在国际空间站上。尽管取得了这些巨大的成就,但还没有一种机载冷原子钟能够实现类似的性能
uan-Yu Jau 正在努力制造世界上最小的原子钟,一种可以极其精确地计时的设备。如果成功,他和他在桑迪亚的团队将制造出比方糖还小的原子钟。但他并不是唯一一个挑战微型钟表极限的人。去年,美国国防高级研究计划局向研究团队发出挑战,要求制造更小、更精确的时钟。Yuan-Yu 领导着从事这项工作的桑迪亚团队。Yuan-Yu 说:“他们希望所有东西的体积都在 1 立方厘米,目前还没有这种尺寸的原子钟。”他的核心设计甚至更小——长约 1 厘米,宽和高仅为 2 毫米,总体积为 0.04 立方厘米。DARPA 要求这些设备在一周后准确度在百万分之一秒以内。
在物理和生命科学中具有广泛应用的固态量子传感器 ( 金刚石色心 -NV 氮原子空穴色心 ) ; 探索标准模型之外物理的量子传感器 ( 磁力仪和原子钟,囚禁的极性分子,自旋压缩,控制自旋退相 干,纠缠 ) ; 量子信息处理成为现实 ( 囚禁离子,约瑟夫森结 ) ; 增强型量子传感器的先进材料 ( 光晶格,固态量子缺陷,混合量子系统,拓扑材料 ) ; 用于暗区物理的量子传感器 ( 高 Q 值的射频或微波腔,基于超导干涉效应的高 Q 接收器 ) ; 基于原子干涉测量和光学原子钟的精密时空传感器 ( 量子纠缠 ( “压缩” ) 和量子控制 ( “动态解耦” )) 。
摘要原子技术的商业化需要用紧凑和可制造的光学平台代替实验室规模的激光设置。可以通过集成的光子学和元图光学的组合在芯片上生成自由空间的复杂布置。在这项工作中,我们使用平流芯片键合将这两种技术结合在一起,并展示了一种集成的光学体系结构,以实现紧凑的跨原子钟。我们的平面设计包括两个共对准的磁磁陷阱中的十二个光束。这些梁位于芯片上方,在中央位置与直径高达1厘米的中心位置相交。我们的设计还包括两个在晶格和时钟波长的联合传播光束。这些梁在共线和垂直方向发射以探测磁陷阱的中心,在那里它们的直径为≈100µm。使用这些设备,我们证明了我们的集成光子平台可扩展到任意数量的光束,每个光束具有不同的波长,几何形状和极化。
• Vector Atomic 是一家成立 5 年的加州初创公司,专注于原子仪器的应用和商业化 • 原子仪器(例如原子钟)使用原子的共振频率来测量时间,这些共振频率充当时钟的节拍或滴答声 • 传统原子钟基于铯原子簇,当被激光源照射时,它们会发出高频振荡的光 • 基于不同元素的光学时钟(例如左侧显示的 EG-30 设备是碘光学时钟)可以以更高的频率振荡发光,因此提供比传统原子钟更精确的滴答声
如今,时间就是一切。从会议和约会到最后期限和电话会议,我的日程安排要求我精确到分钟地掌握时间。即使在周末,我也有少年棒球联盟的比赛要指导,节目要录制,飞机要赶。如果我迟到了,我就完蛋了。问题是,如果我的时钟不准确,就很难准时。即使是数字时钟也可能不准确。断电、电池没电、时间变化……所有这些都会导致时钟不准确。接下来,你就会迟到一个小时,走进那个重要的会议。现在你不必担心,因为先进的无线电技术已经生产出一种时钟,它直接从科罗拉多州柯林斯堡的美国原子钟获取时间,这是全世界计时的标准。Arcron 的原子钟是您可以买到的最准确、最可靠、最方便的钟表。地球上最准确的时钟。每天凌晨 1 点,这款“智能”时钟都会调到科罗拉多州美国原子钟发出的无线电时间信号,并自动重置为准确的小时、分钟和秒。美国原子钟每天的精确度为一百亿分之一秒。它使用分子技术测量原子的振动率(一个常数)来校准时间。这意味着时钟在一百万年内偏差不到一秒!原子钟甚至会自动调整夏令时,所以你不必记得“春天
摘要在最近的几项政府委托报告和国家量子战略,弹性PNT政策框架和2023年国家风险登记册中的几项政府委托报告和特征中强调了英国对GNSS的依赖的脆弱性。持有原子钟是准确的本地计时源,可以为关键的国家基础设施(CNI)提供弹性的精度时间,以代替GNSS定时信号。本文档介绍了英国的持有原子钟技术的摘要,这是一项基准,以帮助支持英国主权商业保留原子钟制造能力的未来发展。这些持有时钟将主要用于英国定位,导航和计时(PNT)申请,包括英国CNI的规定。本文档总结了几个应用程序领域(现在和将来)的时机要求和标准,英国当前的原子钟开发进展以及英国当前的供应链和工业能力。在本报告的末尾,我们描述了我们对为UKS国家时机中心(NTC),未来的国家时机基础设施和UK CNI最终用户提供必要条款所需的协调英国持有时钟开发计划的基本要素。