原子和离子的捕获和冷却方法对原子钟产生了革命性的影响,因为它们可以减少甚至消除主要的系统频率偏移 [1]、[2]、[3]。捕获原子/离子光学钟的性能比其前代产品提高了几个数量级,并已成为国家计量实验室研究项目的关键组成部分 [4]、[5]。基于捕获离子的连续运行原子钟已经存在了几十年,但迄今为止仅限于地面应用 [6]。本文介绍了 NASA 的深空原子钟 (DSAC),它于 2019 年发射,成为第一台在太空中运行的捕获离子原子钟 [7]。DSAC 的设计不包括低温技术、灵敏的微波腔或激光器。相反,它在接近室温的温度下运行,使用简单的行波微波元件,并使用等离子体放电深紫外光源。这些元件都具有很高的成熟度和强大的可操作性,使其能够发射到太空并在太空中运行。在地面上,DSAC 展示了 1.5x10 -13 /t 1/2 的短期分数频率稳定度 [8]。在太空中,它运行了 2 年,实现了每秒 1.5x10 -13 的分数频率稳定度,超过一天的平均时间的长期稳定性为 3x10 -15,23 天内的时间偏差仅为 4 纳秒(未消除漂移),估计漂移为每天 3.0(0.7)x10 -16。在目前使用的最稳定的空间时钟中,每个时钟都建立了至少一个数量级的新空间时钟性能标准 [9],[10],[11]。由于对辐射、温度和磁场变化的敏感度低,DSAC 时钟也适用于太空环境。预计这种级别的空间时钟性能将实现单向导航,即在现场测量信号延迟时间,从而实现近实时深空探测器导航 [12 ] 。在本文中,我们将描述 DSAC 在太空中的性能及其环境敏感性、该技术的主要应用以及未来发展方向。
主要关键词