摘要 各种行为任务测量反应抑制,包括取消不必要动作的能力,通过停止信号反应时间 (SSRT) 进行评估。目前尚不清楚 SSRT 是否是抑制网络完整性的不可改变的固有测量方法,还是可以随着重复而改进。当前的研究探讨了预期反应抑制任务 (ARIT) 的 SSRT 在两个会话中是否以及如何变化,以及与停止信号任务 (SST) 相比如何。44 名参与者在两个会话中重复了 ARIT 和 SST。计算了 SSRT 及其组成指标(Go 试验反应时间、停止信号延迟)。反映非选择性反应抑制的 SSRT 在 ARIT 和 SST 的会话之间是一致的(两者 p > 0.293)。反应时间和停止信号延迟在 ARIT 的会话之间也保持稳定(所有 p > 0.063),而在 SST 中,反应时间(p = 0.013)和停止信号延迟(p = 0.009)增加。反映 ARIT 上行为选择性停止的 SSRT 在两个会话中有所改善(p < 0.001),这是由反应时间(p < 0.001)和停止信号延迟(p < 0.001)的变化所证实的。总体而言,非选择性抑制的最大效率在 ARIT 的两个会话中保持稳定。然而,SST 的结果证实,非选择性抑制可能受到抑制网络完整性以外的因素的影响。ARIT 上的行为选择性停止在会话之间发生变化,这表明 SSRT 捕获的连续神经过程在第二个会话中发生得更快。这些发现对未来需要在多个会话中进行行为测量的研究具有重要意义。
式中,T d 表示信号延迟,K为系数,DK表示介质材料的介电常数。可以看出,材料的介电常数越低,信号延迟越低,信号保真度越高。因此,在第五代通信技术深入发展的背景下,使用低k材料成为降低信号滞后时间的有效途径。一般在微电子领域常用的介质材料都是介电常数相对较低的材料。低介电材料是指介电常数高于空气(1)而低于二氧化硅(3.9)的材料,其值范围在1~3.9之间。低介电聚合物材料因具有易加工、热稳定性、电绝缘性等优点,被广泛应用于电子电工、电子集成、印刷电路板、通讯材料等领域。目前已知聚四氟乙烯(PTFE)[6, 7]、液晶聚合物(LCP)[8 – 10]、聚酰亚胺(PI)[11 – 14]等已广泛应用于电路板基材,环氧树脂、氰酸酯树脂等也作为优良的胶粘剂广泛用于电子设备的封装材料[15 – 17]。图1为环氧树脂、氰酸酯树脂和聚四氟乙烯的介电性能。
I.在非常大规模集成(VLSI)设计领域的介绍中,全球路由的效率和可靠性在综合电路(ICS)的整体性能中起关键作用。随着IC的复杂性继续随着技术的发展而增长,传统的路由算法在适应现代芯片布局的复杂和动态性质方面面临着越来越多的挑战。这些算法通常基于静态规则和启发式方法,可能会导致次优路径,从而导致线长度增加,信号延迟更高和拥挤。这种拥塞反过来可以显着影响最终芯片设计的性能,功耗和面积。为了应对这些挑战,对将先进的机器学习技术(尤其是深度学习)应用于VLSI全球路线的拥堵预测问题越来越兴趣。深度学习提供了学习大型数据集中复杂模式和依赖关系的潜力,使其非常适合预测和减轻VLSI设计环境中的拥塞。通过利用深度学习模型,可以开发一种动态路由优化方法,以适应实时设计条件和路由模式。
摘要 - 非事物网络(NTN)对于无处不在的连通性至关重要,可在遥远和非层面区域提供覆盖范围。但是,由于目前NTN是独立运作的,因此他们面临诸如隔离,可扩展性有限和高运营成本等挑战。与地面网络集成卫星的明显,提供了一种解决这些局限性的方法,同时通过应用人工智能(AI)模型实现自适应和成本效益的连接。本文介绍了Space-O-Ran,该框架将开放式无线接入网络(RAN)原理扩展到NTN。它使用分布式空间运行智能控制器(Space-rics)的层次结构闭环控制,以动态管理和优化两个域之间的操作。为了启用自适应资源分配和网络编排,所提出的体系结构将实时卫星优化和控制与AI驱动的管理和数字双(DT)建模集成在一起。它结合了分布式空间应用程序(SAPP)和分离的应用程序(DAPP),以确保在高度动态的轨道环境中的稳健性能。核心功能是动态链接接口映射,它允许使用卫星上的所有物理链接适应特定的应用程序要求并更改链接条件。仿真结果通过分析不同NTN链接类型的LAS限制来评估其可行性,表明群集内协调在可行的信号延迟范围内运行,而将非实时时间任务降低到地面基础架构对地面基础设施的降低可以增强对第六代(6G)网络的可扩展性。
违反摩尔法律计算绩效的限制正在努力跟上不懈的驱动力,以实现高性能芯片,因为性能瓶颈已经出现了,扩展范围在所有方面都达到了极限。扩展摩尔定律的一种方法是通过异质整合,这可以随着性能水平的提高铺平到未来设备的道路。随着芯片的变小,越来越强大,连接不断增长的晶体管数量的电线变得越来越薄且包装更密集。产生的阻力增加和过热会导致信号延迟,并限制中央处理单元(CPU)时钟速度。其他问题包括大规模集成电路(LSI)操作中的频率限制,与电池相关的电源限制和冷却问题。在改善移动计算和图形处理系统中的性能时,一个考虑因素是确保工作频率和功耗均未增加。另一个考虑因素是,通过功耗效率改善内存访问带宽,因此必须具有广泛的输入/输出(I/O)内存总线而不是高频接口。此外,随着系统性能的改善,此类系统中的内存能力变得越来越重要。3D芯片技术有助于解决几个问题,这些问题挑战了芯片的性能提高和加工尺寸的减少。这种方法通过称为晶圆键的过程在另一个芯片或集成电路(IC)上层。TSV还可以实现更有效的散热并提高功率效率。与此使用透过的硅VIA(TSV)制造方法垂直堆叠多个芯片组件,从而产生更快,更小和更低的CPU。