扫描隧道显微镜 (STM) 能够在具有原子精度的表面上自下而上地制造定制的自旋系统。当将 STM 与电子自旋共振 (ESR) 相结合时,这些单个原子和分子自旋可以被量子相干地控制并用作电子自旋量子比特。在这里,我们通过沿两个不同方向采用相干控制来展示对表面上这种自旋量子比特的通用量子控制,这通过两个具有明确相位差的连续射频 (RF) 脉冲实现。我们首先展示量化轴上布洛赫矢量的每个笛卡尔分量的变换,然后进行 ESR-STM 检测。然后,我们展示了使用双轴控制方案生成单个自旋量子比特的任意叠加态的能力,其中实验数据与模拟结果高度一致。最后,我们介绍了动态解耦中双轴控制的实现。我们的工作扩展了基于 STM 的脉冲 ESR 的范围,突出了该技术在表面电子自旋量子比特的量子门操作中的潜力。
稀释,超速原子气体为研究集体量子性能提供了一个绝佳的平台,因为它们的可操作性和相互作用的相对简单特征。在这种情况下,Bose-Einstein冷凝物的二元不混合混合物显示出异国情调的激发,例如量子巨大的涡流(即涡流的核心由少数群体填充)。量子涡旋不仅具有超流量背景下的基本利益,而且还具有宇宙学,超导性,非线性光学的类比,并且可能与量子霍尔效应有关。涡流质量的出现是混合物的典型特征,但也可能是由于有限的温度效应或杂质引起的,并导致令人着迷的现象。在论文中,我们着重于两种不同的肺泡物种混合物中巨大涡旋的二维动力学,具有接触相互作用和硬壁圆形电位。我们通过变异的拉格朗日方法得出了n v巨大涡流的点状模型,并将其应用于偶联对大规模涡流动力学的效果的研究。在此基础上,在不平衡的涡流质量的情况下,我们发现并表征了两涡轨轨迹的一些显着解决方案。我们根据描述混合物的(平均场)Gross-Pitaevskii方程来验证我们的分析结果。我们对不平衡涡旋对的表征导致了引人入胜的动力学状态的识别,从而使微观涡流质量允许其位置和预动力频率进行间接度量。随后,我们通过考虑填充成分的量子隧穿来扩展涡流对的研究以包括时间依赖性涡流质量。通过数值模拟,我们发现该系统具有宏观动力学,导致了骨化约瑟夫森连接(BJJ)。bjjs的动力学表现出具有超导性约瑟夫森连接的类比,并观察到了光势中相干的玻色气体。在BJJS中,中性原子的相互作用特征显示出新的效果,例如宏观量子自我捕获。值得注意的是,我们发现我们的两涡体系统显示出表征BJJ的所有(非线性)现象,并且随着时间的流逝,它是稳健且稳定的。我们还得出了BJJ的相应Bose-Hubbard模型及其均值近似,从而为模型的系数提供了一些分析表达式,这是重要系统参数的函数。我们的工作为令人兴奋的前景开辟了道路,例如研究涡旋项链和格子中填充成分的隧穿,杂物和不对称的效果是由潜在的不同涡流核心大小,多重量化量化涡流的包含以及对Fermi超级氟化物扩展的范围。
但是这些相互作用所涉及的能量很小,这就是为什么我们为其使用不同的单元,电子伏特。在开始计算之前,请确保将EV中给出的任何值转换为Joules。
研究了激光波长对原子探针断层扫描(APT)中元素组成分析中精度的影响。系统比较了三种不同的商业原子探针系统 - LEAP 3000 x HR,LEAP 5000 XR和LEAP 6000 XR-用于研究较短激光波长的锡模型涂层,尤其是在深紫外线(DUV)范围内,对蒸发行为的影响。发现的结果表明,较短波长的使用提高了元素组成的准确性,而主潮具有相似的电场强度。因此,热效应减少,进而提高质量分辨能力。这项研究的一个重要方面包括估计不同工具的能量密度比。波长的降低伴随着由于激光斑点尺寸较小而导致的能量密度增加。此外,还研究了检测器技术的进步。最后,确定探测器的死时间,并评估了死区,以调查具有LEAP 6000 XR的氮化物测量中的离子堆积行为。
简介。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3594碱性培养基中还原反应。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3594 ORR在碱性培养基中的一般原理和机制。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3595个在阴离子交换膜燃料电池中的ORR的电催化剂。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。3595个在阴离子交换膜燃料电池中的ORR的电催化剂。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3598碳纳米管。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3598石墨烯。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3599生物质量衍生的碳。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3599杂种掺杂的碳设计和合成。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>3599氮气cnts。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 3601硼偏用的中枢神经系统。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>3599氮气cnts。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3601硼偏用的中枢神经系统。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3605磷掺杂的CNT。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3607共同掺杂的CNT。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3607金属氮掺杂的CNT。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3610氮掺杂的谷物。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3611:泛图。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3611磷掺杂的谷物。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3612共掺杂/多杂种掺杂石墨烯。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3612金属,杂体共掺杂石墨烯。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3615生物启发的ORR催化剂。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3617 AMFC性能和稳定性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3620结论和勘探的依据。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3621竞争利益声明。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3623致谢。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3623参考。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3623
量子技术(包括通信、计算和传感)在很大程度上依赖于量子系统的特性(包括自旋和光子)来编码、处理和传输信息。纳米材料中的原子缺陷(例如金刚石纳米晶体和六方氮化硼 (hBN))代表了这些技术的有前途的平台。这些由晶格不规则性形成的缺陷中心在紧凑性、可扩展性和可集成性方面具有无与伦比的优势,使其成为先进量子设备的首选。然而,退相干和外部扰动带来的挑战限制了系统性能,仍然是重大障碍。
免责声明 这不是国际原子能机构的官方出版物。材料未经国际原子能机构正式审查。所表达的观点不一定反映国际原子能机构或其成员国的观点,仍由撰稿人负责。尽管我们已尽最大努力保持本出版物所含信息的准确性,但国际原子能机构及其成员国对使用本出版物可能产生的后果概不负责。使用特定的国家或地区名称并不意味着出版商国际原子能机构对此类国家或地区的法律地位、其当局和机构或其边界的划分作出任何判断。提及特定公司或产品的名称(无论是否注明为注册)并不意味着有任何侵犯所有权的意图,也不应被解释为国际原子能机构的认可或建议。
在这里报告了一组扩展的替代吡啶与d -x分子(d = x,cn)形成的复合物中x n(x = i,br)卤素键的详细研究。通过Bader的分子中的原子量子理论(QTAIM)和Penda的相互作用量子原子(IQA)方案,已经在不同的(MP2和DFT)理论水平上研究了这些相互作用的性质。吡啶环上的取代基和卤素键特征上的卤代残基。我们发现,交换相关能量代表了对IQA总能量的实质性贡献,在某些情况下,与(I 2个复合物)甚至是dominited(ICN复合物)相当。有意义的信息是由源函数提供的,表明X N相互作用的键临界点对电子密度的主要贡献是从卤素原子得出的,而氮原子的贡献要低得多,该氮原子充当电子密度的源或源。从远端原子的相关贡献(包括吡啶环不同位置的各种电子支持和吸引电子取代基)也被确定,突出了电子密度的非局部特征。已经检查了结合能,根据IQA的相互作用能量和QTAIM描述符(例如DELECALIZERIAD指数和源函数)之间可能存在的关系。通常,只有在直接涉及的卤素和氮原子外部环境中,才能发现良好的相关性,在相互作用中起较小的作用。
AmélieSchultheiss,Abderrahime Sekkat,Viet Huong Nguyen,Alexandre Carella,Anass Benayad等。通过空间原子层沉积,高性能封装透明导电聚合物。合成金属,2022,284,pp.116995。10.1016/j.synthmet.2021.116995。hal-03636177
研究了在100 mm硅基底上采用等离子体增强原子层沉积技术制备氮化铌薄膜,并研究了薄膜性质的异质性。直径为92mm时表面电阻分布的不均匀性为7%。使用X射线反射法测量板的中心部分和距离中心40毫米的四个位置的膜厚度分布的不均匀性为4%。在基板上的相同位置进行的 X 射线衍射没有显示反射有任何可见的变化。不同区域的晶格参数差异仅为0.06%。超导测量表明,在直径为80毫米时,超导转变温度的最大偏差为1.6%,临界电流密度的最大偏差为7%。