詹姆斯·克雷(James Clear)的原子习惯已成为努力改善习惯并实现预期结果的个人的转型指南。本文探讨了本书的核心原则,重点是小型行为变化与长期转型之间的相互作用。批判性地研究了习惯形成的概念,身份在个人成长中的作用以及行为改变的四个定律。这项研究还分析了原子习惯如何与心理和行为研究保持一致,从而提供了可持续自我改善的路线图。通过调查其对读者及其在各个领域的应用的影响,该论文将原子习惯作为个人和专业发展的开创性工作。
微生物组革命移动了微生物学家的守门柱。几个世纪以来,微生物学一直在理解相对少量的微生物上。这些模型物种是因为它们对健康,环境,工业的重要性,或仅仅是因为该物种易于使用。微生物学家在整个分子,遗传和基因组旋转中保持了关注,但是宏基因组革命使得不可能忽略我们世界各个方面发现的成千上万种研究的物种(DeWhirst等人。2010; Quast等。2013; Parks等。2018)。微生物组的科学崛起令人兴奋,但它给微生物学带来了巨大的实践挑战。如果只花了几个世纪的时间才能学习几种模型物种的细节,我们如何才能理解成千上万的新发现物种?为了说明研究研究的数据的匮乏,我们进行了文献计量分析,以提出微生物学研究的不均匀分布。GTDB数据库的版本202(Parks等人2022)包括43,409种独特的物种,我们计算了参考标题或摘要中每个物种的PubMed文章数量。结果严重偏斜。几乎74%的已知物种从来都不是科学出版物的主题 - 这些是未研究的细菌(图1A)。即使在研究的物种中(至少有一个出版物),所有文章中的50%仅指十种物种(图1b)。因此,我们的知识密度(我们每个物种所学的数量)实际上正在减少。所有细菌学文章中有90%以上研究的物种的研究不足1%,从而产生了细小的微生物的“长尾巴”。科学企业正在扩大,每年科学家发表的论文比久违的年份(国家科学基金会和国家科学委员会2021年)多4-5%。很容易想到,科学产量的增加将克服微生物的长尾巴,也就是说,科学家最终将四处研究每个物种。不幸的是,每年发现的物种数量超过了科学产出的增加(图1C)。在1990 - 2020年之间,每个研究的细菌种类发表的论文数量降低了60%(图1D)。当我们的很多理解来自少量的小动物时,我们对细菌多样性的看法就会有偏见。微生物学家杰弗里·格拉尼克(Jeffery Gralnick)曾经打趣说:“大肠杆菌是大肠杆菌的伟大模型生物。”格拉尼克(Gralnick)的评论提到在Shewanella Oneidensis的TCA周期中发现异常(相对于大肠杆菌)(Brutinel and Gralnick 2012)。尽管Oneidensis链球菌的引用减少了201倍,但可以说不是一个研究的物种。我们的分析将其排名为研究最多的细菌,在所有物种中排名前2.17%。即使是格拉尼克上述论文的简介也将S. oneidensis表示为“模型环境有机体”。如果在微生物2%之外发现了S. Oneidensis的TCA周期等差异,请想象其他98%的微生物中的多样性。微生物学家如何赶上爆炸的生命树?我们提出了两个宏伟的挑战,以培训一代可以解决微生物世界多样性的微生物学家。首先,我们需要采用多因素实验设计。一次进行一次研究的物种,菌株,基因,环境,压力源和表型。统计学家已经教导了数十年来,最有效,最强大的实验设计同时改变了多个因素,然后对效果进行解析
标题:使用原子探针断层扫描摘要在材料中看到氢:金属材料中的氢存在可能导致灾难性的早期裂缝,称为氢含糖。观察氢及其在微观结构中相关的影响一直是一个巨大的挑战,它限制了解决该问题的解决方案。为此,我们的研究小组开发了一种特殊的工具,即低温原子探针断层扫描(Cryo-Apt),用于氢图,并将其与微力方法结合使用,以研究钢中的氢化含量。我们的努力为破译钢中的氢气诱捕和拥抱机制提供了新的见解,从而促进了钢微结构的发展,钢微结构具有良好的抵抗力。bio:Yi-Sheng(Eason)Chen博士是Nanyang助理教授(NAP)和新加坡国家研究基金会(NRF)材料科学与工程学院,Nanyang Technological University,新加坡(NTU)。他的研究重点是材料表征,冶金和氢技术。专门使用高级显微镜技术,例如原子探针断层扫描(APT)和电子显微镜来开发高级金属材料的结构属性处理关系。从这些努力中获得的见解将有助于更深入地了解材料行为,为发展下一代高性能材料的发展铺平道路。他是Sinica学术界物理研究所的前研究助理。 参考:[1] Y.-S. Chen等。他是Sinica学术界物理研究所的前研究助理。参考:[1] Y.-S. Chen等。“金属中的氢诱捕和覆盖 - 综述。”国际氢能杂志(印刷中)(2024年)。https://www.sciendirect.com/science/article/pii/s036031992401332 6
二维 (2D) 过渡金属二硫属化物已成为下一代光电和自旋电子器件的有前途的平台。使用胶带进行机械剥离仍然是制备最高质量的 2D 材料(包括过渡金属二硫属化物)的主要方法,但总是会产生小尺寸的薄片。这种限制对需要大规模薄片的研究和应用构成了重大挑战。为了克服这些限制,我们探索了使用最近开发的动力学原位单层合成法 (KISS) 制备 2D WS 2 和 WSe 2。特别是,我们关注了不同基质 Au 和 Ag 以及硫族元素原子 S 和 Se 对 2D 薄膜产量和质量的影响。使用光学显微镜和原子力显微镜表征了 2D 薄膜的晶体度和空间形貌,从而对剥离质量进行了全面评估。低能电子衍射证实 2D 薄膜和基底之间没有优先取向,而光学显微镜则表明,无论使用哪种基底,WSe 2 在生成大单层方面始终优于 WS 2。最后,X 射线衍射和 X 射线光电子能谱表明 2D 材料和底层基底之间没有形成共价键。这些结果表明 KISS 方法是非破坏性方法,可用于更大规模地制备高质量 2D 过渡金属二硫属化物。
3.1。与设施有关的安全因素。。。。。。。。。。。。。。。。。。。。20 3.2。与安全分析有关的安全因素。。。。。。。。。。。。。。。。。29 3.3。与经验的绩效和反馈有关的安全因素。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32 3.4。与管理有关的安全因素。。。。。。。。。。。。。。。。。。36 3.5。与环境有关的安全因素。。。。。。。。。。。。。。。47 3.6。全球评估。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。50 3.7。集成实施计划。。。。。。。。。。。。。。。。。。。。。。。。51 3.8。 文档。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 5251 3.8。文档。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。52
双原子分子代码 [VV Albert, JP Covey 和 J. Preskill, Robust encoding of a qubit in a molecule, Phys. Rev. X 10, 031050 (2020). ] 旨在将量子信息编码在双原子分子的方向上,从而能够校正小扭矩和角动量变化带来的错误。在这里,我们直接研究原子和分子平台固有的噪声——自发发射、杂散电磁场和拉曼散射——并表明双原子分子代码无法抵御这种噪声。我们推导出足以使代码免受此类噪声影响的简单条件。我们还确定了现有的并开发了新的吸收-发射 (Æ) 代码,这些代码比分子代码更实用,需要更低的平均动量,可以直接抵御任意阶的光子过程,并且适用于更广泛的原子和分子系统。
项目详情:目前,全球范围内正在开发用于量子技术的原子平台,例如原子钟、量子重力仪和加速度计以及原子干涉仪。但测量通常非常耗时且成本高昂,而用于后处理时间序列的最先进的算法在数值上要求很高。尽管过去二十年一直专注于使用测量相位参数的量子干涉仪进行传感,但对于自然界基本理论中出现的大多数可观测量,例如磁场、凝聚态分数和化学势,尚不存在最佳估计理论。最近,安德斯教授的团队开发了全局量子测温法 [1],这是一种用于温度估计的尺度尊重框架,也是相位估计之外的估计理论的第一个原型。这种现代温度估计策略充分利用了估计参数的对称性,并采用了贝叶斯推理技术。真正的优势在于它可以指导如何在实验测量中选择控制参数,以便在有限的资源下最大限度地获得信息增益。正如 [2] 中利用伯明翰大学进行的钾 (K) 实验的一组预先存在的数据所证明的那样,可以使用全局量子测温框架先验地优化释放-重新捕获冷原子实验的等待时间。最近,安德斯教授及其同事使用诺丁汉大学的冷原子平台将这种新的全局估计技术扩展到完全不同的量——原子数的测量,发现与以前的传感技术相比,精度提高了五倍 [3]。本理论项目将建立使用磁力仪和陀螺仪同时估计磁场和惯性旋转的最佳策略。这些策略将用于减少正在进行的原子实验中准确估计参数所需的数据数量,因为获取大量数据集的成本可能高得令人望而却步。学生的目标之一是推广最近开发的用于估计位置同构参数的框架 [4]。目标是找出可适用于量子技术中除相位之外的任何相关参数的最佳量子估计策略的方程。这将涉及变分法、群对称性和信息几何等分析技术。后续目标是调整理论框架,使其适用于正在进行的原子磁力仪实验 [5]。这还将涉及使用预测的量子估计策略分析原型量子磁力仪产生的时间轨迹。目标是确定此类策略是否能够实际降低磁场和惯性参数估计的不确定性。预计将与目前正在开发量子磁力仪的实验团队合作。[1] J. Rubio、J. Anders、LA Correa,PRL 127,190402 (2021) [2] J. Glatthard 等人,PRX Quantum 3,040330 (2022) [3] 通过自适应对称信息贝叶斯策略将冷原子实验的精度提高五倍,M. Overton 等人,arXiv:2410.10615 (2024)。[4] J. Rubio,Phys. Rev. A 110,
半导体旋转量子尺将出色的量子性能与使用行业标准的金属氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化量(MOS)工艺相结合的量子性能。这也适用于离子植入的供体旋转,这些供体的旋转进一步提供了特殊的连贯性时间和核旋转中的较大希尔伯特空间尺寸。在这里,我们演示并整合了多种策略来制造基于规模的供体量子计算机。,我们使用31 pf 2分子植物将放置确定性三倍,而在检测植入物方面达到99.99%的情况。通过植入较重的原子(例如123 SB和209 BI)来保留类似的结合,这些原子代表用于量子信息处理的高维Qudits,而SB 2分子可以确定性地形成紧密间隔的Qudits。我们使用纳米孔径使用渐进式植入,证明了具有300 nm间距的供体原子的常规阵列的确定性形成。这些方法涵盖了在硅中基于供体的量子计算机构建的技术要求。
量子计算将彻底改变技术,改变从密码学到制药等各个行业。然而,要发挥量子计算的潜力,需要在物理量子比特实现方面取得突破。在众多有前途的系统中,包括超导电路、分子和光阱,还没有一个系统能够展示大规模量子计算所需的可扩展性。半导体中的自旋态是迄今为止发现的最稳定、抗噪声的量子比特之一。此外,半导体中的供体原子基本相同,使其成为可扩展量子设备的有力候选者。这项研究旨在利用锗的原子级精密制造来开发下一代量子设备,锗是一种有望克服当前可扩展性挑战的材料。
我们提出了格子(p Rotein la tent i doffusion),这是一种通过在预先训练的序列序列序列序列的序列序列的压缩潜在空间上学习扩散,用于蛋白质结构域的发电范围和蛋白质结构域的序列。由于在生成模型训练期间仅需要序列训练数据,因此与其他序列结构生成模型相比,我们将可用的训练数据集增加了10 2×至10 4×。此外,这扩大了可控制生成的注释,我们证明了功能和生物体的组成条件,包括2219个基因本体论功能的丰富词汇。样品表现出跨模式的一致性,同时具有条件弗雷切特(Fréchet)的距离(FID)测量的所需特性。格子范式避免了结构数据库的强烈先验和大规模失衡,可以轻松地使用数据和计算来缩放,并可以控制全原子蛋白质结构和序列。