在这项工作的第一部分中,首次使用超冷钙原子 (12 µ K) 实现了 657 nm 的光学钙频率标准,并使用目前不确定性最低的频率梳发生器创建了过渡频率在 1 , 2 · 10 − 14 的世界中确定。以前对频率标准不确定性的重要贡献已降低。通过使用超低原子,多普勒效应的影响可以降低至1 Hz。通过改善激光系统并优化淬火冷却,达到了高达4·10 10 cm -3的集合密度。结合使用状态选择性检测方案对频移进行更灵敏的检测,可以将冲击对不确定性的影响降低到 0 . 3 · 10 − 16 。 。使用光缔合光谱对碰撞进行进一步研究,将基态散射长度的可能值限制在 50 a 0 到 300 a 0 的区间。首次对用于查询时钟转换的激光脉冲中激光相位随时间变化而产生的频移进行了定量检查和校正。
摘要:为保证系统信息安全,航电综合核心系统采用分级分区管理模型。针对上层调度器中的动态优先级策略,从更微观的角度提出了分区执行原子时间的块效应算法,以求得请求时间长度内最大的抢占影响。通过分析上下层策略组合的特殊调度特点,研究任务负载对最后一个分区执行窗口的块效应,得到安全和不安全的分区设计方案。与虚拟处理设计方法相比,安全分区设计方法效率更高,分区设计适应性更广。
本课程的总体目标是将量子力学知识从早期课程 FYSB22 扩展到球对称系统。这种新的理解应用于原子和分子物理学,学生有机会学习这些系统结构的基础。了解光谱方法及其在实验研究中的应用是本课程的核心。本课程还提供了通过分析和数值方法练习解决问题以及撰写科学报告的机会。本课程基于以下课程大纲中描述的知识:FYSA12、FYSA13、FYSA14、MATA21、MATA22、NUMA01、MATB21、FYSB21、FYSB22,对所有内容的良好了解有助于学生完成本课程。
和压力,并在每次前体暴露之间进行吹扫循环。[3] 需要彻底了解以选择前体、基材和发生自饱和沉积的温度窗口。之前已全面介绍了 ALD 类型和前体化学,重点是金属硫化物及其应用。[4] 本综述重点介绍 ALD 生产的薄膜中的界面相互作用。术语“界面”是指两相之间的边界——前一层结束和下一层开始的分离边界。理想情况下,这两层在化学上不具有相互作用,界面充当向下一种材料的突然转换。然而,在实践中,接触区域中的物理、化学和电子相互作用是不可避免的。这些相互作用引起的各种现象为与界面相关的研究开辟了新的途径。例如,最明显的相互作用可能是涉及晶格的相互作用。Short 等人。 [5] 报告称,他们在沉积 ZnS 和 Cu x S 多层薄膜的过程中发现,薄膜的结构取决于最先沉积的材料:Cu 2 S 主要呈现单斜结构,而 CuS 和 ZnS 则呈现六方取向。[6]
M. Beshkova*、P. Deminskyi、C.-W Hsu、I. Shtepliuk、I. Avramova、R. Yakimova 和 H. Pedersen Docent M. Beshkova 电子研究所,保加利亚科学院 72 Tzarigradsko Chaussee Blvd, 1784 Sofia, Bulgaria 电子邮件:mbeshkova@yahoo.com P. Deminskyi 博士、Dr. C.-W Hsu,I. Shtepliuk 博士,林雪平大学物理、化学和生物系 SE-58183 林雪平,瑞典 保加利亚科学院普通与无机化学研究所讲师 I. Avramova。 G.邦切夫街BL。 11,1113 索非亚,保加利亚 R. Yakimova 教授,H. Pedersen 教授 林雪平大学物理、化学和生物系 SE-58183 林雪平,瑞典 关键词:AlN、SiC、石墨烯、ALD、SEM、AFM、XPS 摘要
案例表现:一名63岁的男子,被诊断为患有晚期非小细胞肺癌(NSCLC),骨转移具有表皮生长因子受体突变(外显子19缺失)。他接受了包括阿法替尼和贝伐单抗在内的四种先前的治疗方案。两年后,他发展了抗性并经历了大脑和骨转移,促使转向osimertinib(80 mg/day)。在开始osimertinib之前,他有冠状动脉疾病和高血压史,具有正常心电图(ECG)和左心室射血分数(LVEF)为53%。然而,在启动osimertinib近两个月后,他出现了心脏衰竭症状,LVEF降低到<53%,在ECG上观察到心房颤动。怀疑药物诱导的心脏毒性,osimertinib停止了。停止药物后,他的心脏功能得到了改善,而ECG异常得到了解决。该病例代表了同时发生的心力衰竭和与osimertinib治疗相关的心房颤动的第一个实例。
最小顶点着色问题 (MVCP) 在于用来自 C 的一种颜色为 G 的顶点着色,以尽量减少使用的颜色数量,同时确保没有两个相邻顶点具有相同的颜色。
势能(超)表面描述分子系统电子态的能量及其随原子核位置变化而变化,形成分子几何的“能量景观”。它是分析分子构象、过渡态和化学反应动力学的重要工具(Thru lar 等人,1987 年)。在只有两个原子的双原子分子中,原子核的位置只能用一个坐标表示,因此势能表面简化为势能曲线 (PEC)。每条曲线对应一个电子态的群表示和角动量。数据集中核间距离的范围取决于所述系统。我们的数据集由几个选定的双原子分子系统组成,由碱金属原子对创建。这种二聚体在超冷(内部温度在 mK 范围内)分子系统、玻色-爱因斯坦凝聚和化学反应相干控制的应用中特别受关注。强极性超冷分子的可能应用包括利用极性分子之间的长距离电偶极-偶极相互作用来设计光学量子系统。极性分子的内部自由度可用作量子信息的媒介。在强激光场产生的光学晶格中创建、存储和控制此类分子可用于构建量子计算机(Pazyuk,2015 年)。
TiNiCu 0.1 Sn HH 合金(即 Ti 32.8 -Ni 32.8 -Sn 32.8 -Cu 1.6)的微观结构。主要动机
当二维范德华材料被堆叠以构建异质结构时,Moir'E模式从扭曲的界面或单个层的晶格常数中的不匹配出现。放松原子位置是Moir'e模式的直接,通用的后果,对物理特性具有许多影响。moir´e驱动的原子放松可能被天真地认为仅限于界面层,因此与多层异质结构无关。但是,我们提供了两种类型的范德华异质结构的三维性质的重要性的实验证据:首先,在多层石墨烯中以小扭曲角(θ≈0。14°),我们观察到弛豫结构域的传播甚至超过18个石墨烯层。第二,我们展示了如何在BI 2 SE 3上使用多层PDTE 2,Moir´e晶格常数取决于PDTE 2层的数量。以实验发现的启发,我们开发了一种连续方法,以基于Ab Initi拟示的广义堆叠断层能量功能对多层弛豫过程进行建模。利用该方法的连续性属性使我们能够访问大规模的制度并与我们在这两个系统的实验数据达成协议。此外,众所周知,石墨烯的电子结构敏感取决于局部晶格变形。因此,我们研究了多层松弛对扭曲石墨系统状态局部密度的影响。我们确定对系统的可测量含义,通过扫描隧道显微镜在实验上访问。我们的多层松弛方法不限于讨论的系统,可以用来发现界面缺陷对各种层次感兴趣系统的影响。