化学和生物学的水污染物的复杂性需要有效且可行的治疗方法。在此,使用氮化碳催化剂的光催化臭氧处理有效地用于消除靶向化学污染物的混合物,以及在实际的次级含水量中的大肠杆菌细菌和人类多瘤病毒JC(JC病毒)。在使用尿素和三聚氰胺作为前体制备的催化剂中比较了去角质处理。物理治疗没有明显增强基于尿素的催化剂,而三聚氰胺基(36MCN)材料的结构的改善和MELEM异质结的形成增加了其催化特性。在两组污染物中,光催化的臭氧化系统都优于光解臭,尤其是在臭氧消耗方面。最好的催化剂36mcn,导致消除化学,细菌和病毒污染物所需的臭氧剂量下降57.5%,33.0%和29.0%。羟基自由基还显示为污染物消除的钥匙。臭氧的较高的自由基生产和分解是可能的迹象表明,石墨氮化碳光催化臭氧化的性能更好,这是有效的第三级废水替代方案。
摘要:由于层间间层之间的牢固键合,很难通过从整体WO 3进行直接去角质来获得超薄二维(2D)三维(2D)钨(WO 3)纳米片。在此,使用Sonication和温度合成了3个具有可控尺寸的纳米片和可控尺寸的纳米片。由于层间距离的插相和膨胀,可以成功去除插入的WO 3,以在Sonication下在N-甲基-2-吡咯酮中产生大量的单个2D WO 3纳米片。剥落的超薄量3纳米片在电化装置中表现出比WO 3粉末和无插入的exfoliated Wo 3表现出更好的电致造性能。尤其是,准备好的小WO 3纳米片表现出出色的电致色谱性能,在700 nm时在700 nm时具有41.78%的大型光学调制,而漂白的快速切换行为时间为9.2 s,颜色为10.5 s。此外,在1000个周期之后,小的WO 3纳米片仍然保持其初始性能的86%。
由于Novoselov和Geim设法隔离了一层石墨烯,显示了该材料的出色特性[1],因此石墨烯研究并没有进一步停止。这无疑已成为过去二十年中研究最多的领域,不仅是石墨烯的性质,而且是该材料与其他元素结合形成基于石墨烯的化合物的多功能性[2]。与石墨烯相关材料的主要合成途径之一涉及石墨烯(GO)。在强氧化剂的帮助下,石墨氧化过程引入了氧化石墨氧化过程,引入了官能团,例如羰基,环氧化物,羟基和羧基,可能存在于边缘和/或石墨烯层的基础平面上[3]。这些组减少了层之间的相互作用,从而增加了它们之间的距离。石墨烯片之间的更大空间有助于去角质,从而形成单层或几层氧化石墨烯[4]。因此,GO是一个用功能组装饰的石墨烯层。这些功能组负责石墨烯片板的功能化及其与其他材料的相互作用[5]。进行化学/热修饰的这种多功能性改变了其特性,使其适用于最多样化的区域,例如聚合物复合材料
使用粘合带的机械去角质进行了在六角硼(HBN)的天然晶体上进行的(图S1面板A和C),石墨烯(图s1 b)和石墨(图s1 d)在氧化硅晶片(290nm)上。h-bn薄片被用作顶部(图s1 a)和底部(图s1 c)介电层以及15 nm石墨片。通过手写笔轮廓仪中的测量确认了厚度。在异质结构的堆叠过程中,制造了聚碳酸酯(PC)膜并沉积在聚二甲基硅氧烷(PDMS)上。使用不同层的自然边缘对准两种材料的晶体方向,将顶部HBN薄片捡起50-60°,并在190°的石墨烯单层上沉积。之后,清洁HBN/石墨烯异质结构,通过在氯仿中冲洗几分钟来去除聚碳酸酯膜。使用相同的技术将HBN底部薄片沉积到石墨后门上。最后,堆叠的HBN顶部和石墨烯片以类似的方式捡起,并沉积在HBN底部和石墨堆上,并与天然边缘对齐。
摘要:由于其在材料科学到生物医学的各个领域的潜在应用,近年来,氧化石墨烯(GO)的质量生产引起了极大的关注。石墨烯以其独特的特性而闻名,例如高电导率和机械强度,已被广泛研究。然而,传统的生产方法,例如用苏格兰胶带去角质不适合大规模生产。这使GO成为石墨烯生产的可行替代方案的关注越来越大。尽管如此,到目前为止尚未解决挑战,包括优化氧化过程,结构均匀性的控制以及生产的可重复性。这篇评论通过分析实验和机械研究来确定可实现适合工业规模生产的高收益和可重复的方法来确定重要的发展,从而对生产的进步进行了严格的研究。特别关注氧化技术和结合后的纯化和储存,重点是控制氧化以实现均匀和单层GO。通过此镜头,审查概述了GO工业化的前进道路,旨在弥合学术研究和工业生产之间的鸿沟。关键字:氧化石墨烯,石墨,化学氧化,电化学氧化,质量产生,纯化,优化,工业化,安全性,稳定性
摘要:脊髓损伤(SCI)是一种普遍且残疾的神经系统疾病,促使对干细胞疗法的兴趣日益增加,作为有前途的治疗途径。牙科衍生的干细胞,包括牙髓干细胞(DPSC),来自人类去角质的落叶牙齿(SHED)的干细胞,来自顶端乳头(SCAP)的干细胞(SCAP),牙卵泡干细胞(DFSC),由于其可访问性,最小化的可及性,可及性地拔出了良好的拔出能力。研究表明,它们有可能分化为神经细胞并促进动物模型的SCI修复。本综述探讨了牙齿衍生的干细胞在Sci神经修复中的潜在应用,涵盖干细胞移植,条件培养基中注射,生物工程递送系统,外泌体,细胞外囊泡治疗和综合疗法。评估牙齿衍生的干细胞在SCI治疗中的临床有效性,需要进一步研究。这包括研究潜在的生物学机制,并进行大型动物研究和临床试验。进行更全面的比较,优化牙科干细胞类型的选择并实施功能化的输送系统也很重要。这些努力将增强牙科干细胞修复SCI的治疗潜力。
石墨烯具有有希望的物理和化学特性,例如高强度和柔韧性,再加上高电导率和热导率。因此,它被整合到基于聚合物的复合材料中,以用于电子和光子学应用。与石墨烯发育相关的主要约束是,具有强疏水性,几乎所有分散体(通常是其处理和处理所需施用所必需的)都是在有毒的有机溶剂中制备的,例如N-甲基吡咯烷酮或N,N,N-二甲基甲酰胺。在这里,我们描述了如何使用球磨机制备去角质石墨。通过电子显微镜和拉曼光谱法测量,产生的石墨烯平均为三到四层厚,直径约500 nm。可以以光实体的形式存储;并且很容易分散在水性媒体中。我们的方法包括四个主要步骤:(i)有机分子(三聚氰胺)在石墨中的机械化学插入,然后在水中悬浮; (ii)洗涤悬浮石墨烯以消除大多数三聚氰胺; (iii)稳定石墨烯片的隔离; (iv)冻结以获得石墨烯粉末。该过程分别用于水性悬浮液和干粉末的6-7或9-10 d。该产品具有明确的属性,可用于许多科学和技术应用,包括毒理学影响评估和创新医疗设备的生产。
摘要:单壁碳纳米管(SWCNT)和底物之间的界面热电导很少被表征和理解,这是由于在探测跨这样的NM范围接触的能量传输方面的重大挑战。在这里,我们报告了<6 nm厚的SWCNT束和Si底物之间的界面热电导。用于测量能量传输状态分辨的拉曼,其中拉曼频谱在连续波(CW)下变化,并测量20 ns脉冲激光加热,用于在稳定和短暂的热传导下通过界面热导电持续的稳定和短暂热传导的热响应。由于样品的激光吸收和温度升高不需要知识,因此测量可以实现极端的能力和置信度。在SWCNT束的三个位置中,测量界面热电阻为(2.98±0.22)×10 3,(3.01±0.23)×10 3,以及(1.67±0.27)×10 3 K M W - 1,对应于范围内的热电导率(3.3-3-6.0-×10)。我们的分析表明,SWCNT束和SI基板之间的接触松散,这主要归因于样品的明显不均匀性,这是通过原子力显微镜和拉曼光谱法解决的。对于假定的接触宽度约为1 nm,界面热电阻的阶将为10-6 W m-2 k-1,与报告的机械去角质石墨烯和二维(2D)材料一致。
自Geim和Novoselov [1]获得石墨烯以来,由于各种原因,二维(2D)材料的实验和理论表征是一个非常活跃的研究主题。其中,与散装相比,相比之下,大量的潜在应用,新的物理现象的出现以及很重要的是调整其性质的易感性[2-10]。这些2D材料可以通过自上而下的方法(例如3D层状晶体的液体或机械去角质)或自下而上的技术获得,例如分子束外观外观(MBE),化学蒸气沉积(CVD)和物理蒸气沉积(PVD)。它们的构成非常多样化;研究最多的2D材料是过渡金属硫化剂,六边形硼n- tride(H-BN),磷化物(BP),磷烯,硅,硅,德国烯以及一年一度增加到一年的长列表[11,12]。是由大量合成和理论上提出的2D材料的动机,计算2D材料数据库(C2DMDB)是将稳定性及其基本物理化学特性分类的替代方法[2,4,5]。C2DMDB包含几种尚未达成的材料,这些材料是第一次提出的,或者先前已提出的材料,并已被验证为热和动态稳定。一个例子是Penta-Graphene(PG),Penta-Graphene(PG)是由Pentagons组成的一种新的碳。Penta-Graphene于2014年首次由Tang等人提出。[13],后来由Zhang等人。[14]。尽管到目前为止尚未合成PG,但其物理化学
气候变化通过促进有利于真菌增长的条件来加剧印度历史古迹的衰落。温度升高,湿度高以及降水模式改变促进了真菌在这些结构上的增殖。生物多样性的变化,特别是在微生物群落中,进一步有助于降解过程。有效的保护策略必须解决这些环境因素,以减轻对印度古迹的真菌损害。这项研究调查了促进菌花生长的因素,并随后在1917年成立的标志性帕特纳博物馆(Patna Museum)的遗产纪念碑降解。博物馆拥有代表比哈尔丰富文化遗产的各种文物,雕塑和艺术品。鉴于其历史意义和紧急保存需求,Patna博物馆是用于采样和分析的关键地点。这项研究深入研究了各种压力源和因素,并特别强调了菌花,这些菌斑在近几十年来对Patna博物馆产生了重大影响。考试旨在理解与恶化的纪念碑站点相关的真菌的多样性,特别是从比哈尔邦州帕特纳(Patna)的Patna博物馆内的不同地点收集了10个样本。分离出五种真菌物种,并用曲霉sp。出现是最普遍的,其次是青霉。这些鉴定出的微伪造有助于建筑材料的变色和机械去角质,这是机械菌丝穿透以及深色颜料和有机酸的产生证明的。