从本工作中出现的复式tRNA基因的广泛合成的原理如下。DNA双链体将被变性为形成单链。将在有两个适当的引物的足够大过量的情况下执行此变性步骤。冷却后,一个人希望获得两个结构,每个结构包含与底漆适当复杂的模板链的全长。DNA聚合酶以完成修复复制过程。应导致原始双链体的两个分子。可以重复整个周期,每次新剂量的酶都会添加。但是,在DNA双链体变性后冷却后,形成原始双链体的恢复性会占主导地位,而不是模板 - 播种机复合物的形成。如果无法通过调整底漆的浓度来规避这种趋势,显然,将不得不诉诸于链的分离,然后进行修复复制。在每个修复复制周期之后,必须重复链分离的过程。基于这些思维方式的实验正在进行中。
摘要:为了鉴定出高效、高选择性的 G-四链体配体作为抗癌候选物,本文研究了五种天然化合物,即生物碱 Canadine、D-Glaucine 和 Dicentrine,以及黄酮类化合物 Deguelin 和 Millettone,它们被选为先前鉴定为有前途的 G-四链体靶向配体的化合物的类似物。在控制孔径玻璃测定仪上对 G-四链体进行的初步筛选证明,在研究的化合物中,Dicentrine 是端粒和致癌 G-四链体最有效的配体,并且表现出良好的 G-四链体与双链体选择性。在溶液中的深入研究表明,Dicentrine 能够热稳定端粒和致癌 G-四链体,而不会影响控制双链体。有趣的是,它对所研究的 G-四链体结构的亲和力高于对照双链体(K b ~10 6 vs. 10 5 M − 1 ),并且对端粒的亲和力高于致癌 G-四链体模型。分子动力学模拟表明,对于端粒和致癌 G-四链体,Dicentrine 优先结合 G-四链体沟或外部 G 四分体。最后,生物测定证明,Dicentrine 通过诱导细胞凋亡导致细胞周期停滞,可有效促进强效和选择性的抗癌活性,优先靶向位于端粒的 G-四链体结构。总之,这些数据证实了 Dicentrine 是一种选择性靶向癌症相关 G-四链体结构的假定抗癌候选药物。
CRISPR/Cas9 基因组编辑是一种现代生物技术方法,用于改良植物品种,仅改变特定品种的一个或几个性状。然而,由于缺乏对关键基因的了解、幼苗期较长以及特定品种的整株植物难以再生,这种技术不能轻易用于改良柑橘果实的品质性状。在这里,我们介绍了一种基因组编辑方法,目的是生产果实中同时含有番茄红素和花青素的柑橘幼苗。我们的方法采用双单向导 RNA (sgRNA) 定向基因组编辑方法来敲除果实特异性的 β-环化酶 2 基因,该基因负责将番茄红素转化为 β-胡萝卜素。两个 sgRNA 同时靶向该基因以产生大量缺失,并在两个 sgRNA 靶标中诱导点突变。农杆菌 EHA105 菌株用于转化五种不同的花青素甜橙(属于 Tarocco 和 Sanguigno 品种组)和“Carrizo”枳橙(一种柑橘砧木)作为柑橘转化的模型。在目标区域测序的 58 个小植株中,86% 成功编辑。最常见的突变是缺失(从 -1 到 -74 个核苷酸)和插入(+1 个核苷酸)。此外,在六个小植株中发现了一个新事件,包括两个 sgRNA 之间区域的倒置。对于发生单个突变的 20 个小植株,我们排除了嵌合事件。小植株在营养组织中没有表现出改变的表型。据我们所知,这项工作是使用基因组编辑方法潜在改善柑橘水果品质性状的第一个例子。
摘要:适体功能化的生物传感器在监测复杂环境中的神经递质方面表现出高选择性。我们将纳米级适体修饰的纳米移液器传感器转化为检测体外和离体内源性多巴胺的释放。这些传感器采用具有纳米级孔(直径约 10 纳米)的石英纳米移液器,其用适体功能化,从而能够通过目标特定的构象变化选择性捕获多巴胺。多巴胺结合后适体结构的动态行为导致纳米孔内表面电荷的重排,从而导致可测量的离子电流变化。为了实时评估传感器性能,我们设计了一个流体平台来表征纳米移液器传感器的时间动态。然后,我们通过在生物环境中部署用非特异性 DNA 修饰的对照传感器以及多巴胺特异性传感器来进行差异生物传感。我们的研究结果证实了适体修饰的纳米移液器可用于直接测量未稀释的复杂流体,特别是在人类诱导多能干细胞衍生的多巴胺能神经元的培养基中。此外,传感器植入和急性脑切片中的重复测量是可能的,这可能是由于纳米级 DNA 填充孔内的受保护传感区域,最大限度地减少了非特异性干扰物的暴露并防止堵塞。此外,背外侧纹状体通过电刺激释放的内源性多巴胺的差异记录表明适体修饰的纳米移液器具有以前所未有的空间分辨率和减少的组织损伤进行体外记录的潜力。关键词:生物传感器、DNA、多巴胺、流体学、诱导多能干细胞衍生的神经元、纳米孔■简介
促进受损牙周组织的完全牙周再生,包括牙髓,牙周韧带和肺泡骨,是治疗牙周炎的挑战之一。因此,迫切需要探索牙周炎的新治疗策略。由干细胞产生的外泌体现在是干细胞疗法的有前途的替代品,其治疗结果与其爆炸细胞的替代效果相当。它在调节免疫功能,炎症,微生物群和组织再生方面具有巨大潜力,并且在牙周组织再生中表现出良好的影响。此外,牙周组织工程将外泌体与生物材料支架相结合,以最大程度地提高外泌体的治疗优势。因此,本文回顾了牙周再生中外泌体和外泌体复合支架的进度,挑战和前景。
摘要。本文旨在通过有限元三维数值分析,展示双隧道对收敛剖面的影响,考虑了几种岩体本构模型:弹性、弹塑性和粘塑性。衬砌考虑了弹性和粘弹性本构模型。对于衬砌的粘弹性本构模型,考虑了混凝土的徐变和收缩。对于本文研究的案例,考虑到岩体和衬砌的弹性行为,观察到双隧道收敛剖面幅度差异高达 9%。对于其他模型,即弹性衬砌的塑性岩体、弹性衬砌的粘塑性岩体和粘弹性衬砌的粘塑性岩体,观察到的差异很小。考虑到粘塑性岩体,与弹性衬砌相比,粘弹性衬砌的存在使变形增加了约 20%(在隧道施工结束时),长期行为增加了约 40%。
与编码基因类似,miRNA 由 RNA 聚合酶 II 从 miRNA/MIR 基因转录成长的初级转录本,称为初级/pri miRNA(图1)。此后,pri-miRNA 被 RNaseIII 样酶(称为 DICER-LIKE (DCL 1))与其他蛋白质一起切割成前体/前 miRNA。这些前 miRNA 进一步由 DCL1 加工成 20-24 个核苷酸长的 miRNA:miRNA 双链体。然后,双链体在 3' 端被 HUA 增强子 1 甲基化,并通过 EXPORTIN-5 输出到细胞质中。然后将双链体加载到含有 ARGONAUTE (AGO) 蛋白的 RNA 诱导沉默复合物 (RISC) 中。来自 miRNA:miRNA 双链中只有一条 RNA 链被加载到 RISC 上,而另一条链被小 RNA 降解核酸酶降解。最后,加载的 miRNA 将 RISC 靶向其互补的 mRNA,因此,根据其与目标 mRNA 的互补程度,它可能导致两种结果。如果 miRNA 与目标 mRNA 高度同源,则可能导致 mRNA 的位点特异性裂解,而与目标 mRNA 的弱碱基配对则导致翻译抑制(图1)。
