西蒙·弗雷泽大学(Simon Fraser University),8888年,伯纳比(Burnaby),伯纳比(Burnaby),不列颠哥伦比亚省V5A 1S6,加拿大b计算机科学与工程部,阿利普尔杜尔政府工程和管理学院,西孟加拉邦736206,印度北卡罗来纳州A&t Collessect,Greesline and Models for Modeling and Internial nc Necial nc nc of 27111111, (CAMGIS),悉尼工程和信息技术教职员工,悉尼大学,悉尼大学,ULTIMO,新南威尔士州2007年,澳大利亚E部,安大略省滑铁卢分校的地理与环境管理部,加拿大N2L 3G1,F Helmholtz-Zentrum f helmholtz-Zentrum dresden-Rossendorf(Hzdr),Helmholdorf(HZDR)奥地利维也纳1030号人工智能研究(IARAI)
基于证据的临床实践指南已通过协定工具进行了审查,以详细说明本指南进行分析(通过英语英文评估指南,对欧洲的研究和评估的缩写),评估了众所周知,该信息众所周知,这些信息既可以评估了众所周知的众所周知的众所周知的信息,又可以评估众所周知的涉及到众所周知的范围。作为有效性的标准。 “良好指南的基本要素”,包括信誉,临床适用性,临床灵活性,清晰度,过程的跨学科性,编程更新和文档。 div>
情绪障碍,包括重度抑郁症(MDD)和双相情感障碍(BD),是普遍且致残的精神疾病(1)。情绪障碍的患者表现出由遗传和环境因素的复杂相互作用引起的症状(2-4)。尽管有很多发现,涉及各个级别的结构和功能改变,从微结构和分子途径到神经网络,但对抑郁症基本机制的理解仍然很少(4)。最近的证据表明,情绪障碍与几种机制有关,包括表观遗传调节和氧化应激,这可以触发基因组材料中的各种修饰,例如DNA甲基化或氧化(3,5,6)。表观遗传调节包括控制基因表达的机制,而DNA核苷酸序列没有任何变化。越来越多的报告表明表观遗传机制,例如DNA甲基化,组蛋白修饰和非编码RNA可能在情绪障碍的发病机理以及对药理干预措施的反应中起关键作用(3、5、7、8)。在表观遗传机理中,DNA甲基化是情绪障碍中最广泛的研究,涉及将甲基添加到DNA分子中。DNA甲基化改变经常在抑郁症患者中显示(9)。除了甲基化变化外,DNA还易于自由基氧化,从而导致氧化引起的DNA损伤。以前的证据支持氧化诱导的DNA损伤在抑郁症的发病机理中存在(10 - 13)。但是,这些发现仅基于核遗传物质在内的核DNA和RNA的修改。线粒体是半自治的细胞器,其中包含其自己的,圆形的,母体遗传和双链(即重和轻链)线粒体DNA(mtDNA),并用作人体的主要能量供应。mtDNA编码属于电子传输链复合物,22个转移RNA和2个核糖体RNA的13个多肽,并包含一个非编码区域,其中包括位移环(D-Loop)(14,15)。mtDNA的改变可能会导致线粒体基因表达的变化,从而影响人体的线粒体功能和生物能调节,从而导致线粒体功能障碍(16)。线粒体功能障碍已被确定为抑郁症各个方面的关键机制之一,例如精神症状和神经认知异常以及早期衰老(17,18)。先前的研究报告了MDD和BD(19,20)中线粒体代谢产物,基因或蛋白质水平的异常,并提出了类似的线粒体功能障碍,这些疾病之间的线粒体功能障碍(21 - 23)。尽管mtDNA比核DNA更容易受到基因组修饰的影响(例如甲基化和氧化)(24,25),但识别mtDNA修饰,
双相情感障碍(BD)是一种致命的精神障碍,由抑郁症和躁狂症发作之间的振荡以及生物节奏的干扰。迫切需要确定BD病理生理学的复杂机制。基于神经科学技术的连续发展,目前认为中枢神经系统中电路功能障碍与BD发展密切相关。然而,存在挑战,因为它取决于可以操纵神经元活性的时空动力学的技术。值得注意的是,光遗传学的出现使研究人员具有精确的时机和局部操作,提供了一种破译精神障碍病理基础的方法。尽管由于有效的动物模型的稀缺性,因此在BD研究中应用光遗传学仍然是初步的,但该技术将推进神经回路水平的精神病研究。在这篇综述中,我们总结了与情绪和节奏异常有关的至关重要的脑活动和功能,从而阐明了BD的潜在神经基质,并强调了光遗传学在追求BD研究中的重要性。
Kaikai Zheng#,Yu Tong#,Shihao Zhang,Ruiying He,Lan Xiao,Zoya Iqbal,Yuhong Zhang,Jie Gao *,Lei Zhang *,Lei Zhang *和Yulin li *#:作者对工作做出了同等贡献。K。Zheng,R。He,Y. yulinli@uma.pt S.中国杭州医学院人民医院电子邮件:K。Zheng,R。He,Y. yulinli@uma.pt S.中国杭州医学院人民医院电子邮件:
摘要。研究了双极化合成孔径雷达 (SAR) 对光学数据对土地利用分类准确性的贡献。为此,实施了不同的图像融合算法,以在保留光谱信息的同时获得空间改进的图像。为了比较融合技术的性能,使用了微波 X 波段双极化 TerraSAR-X 数据和多光谱 (MS) 光学图像 RapidEye 数据。我们的测试地点 Gediz Basin 覆盖农田和人工建筑。在分类阶段之前,应用了四种数据融合方法:(1) 可调 SAR-MS 融合、(2) Ehlers 融合、(3) 高通滤波和 (4) 贝叶斯数据融合。使用统计分析评估了融合图像的质量。在这方面,我们采用了几种方法进行质量评估。然后,我们还使用支持向量机作为基于核的方法、随机森林作为集成学习方法、基本 k-最近邻和最大似然分类器方法对融合图像的分类性能进行了比较研究。实验为双极化 SAR 数据和光学数据在土地利用/覆盖测绘中的融合提供了有希望的结果。© 作者。由 SPIE 根据 Creative Commons Attribution 3.0 Unported 许可证发布。全部或部分分发或复制本作品需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.JRS.9.096054]
致谢 我感谢巴黎高科电信射频和微波 (RFM) 实验室成员在这项研究中所做的一切努力。我特别要感谢我的主任 Xavier BEGAUD 先生对我研究的指导和支持。他毫不犹豫地给出了有益的建议。感谢 Mahmoud KAMAREI 教授和 Alireza KAZEMIPOUR 博士对这篇论文的热情和创造性关注。我还要感谢小组主任 Bernard HUYART 教授的诚挚建议和支持。他们对我研究的评论对提高论文质量非常有帮助。我还要感谢 B. HUYART 教授接受评审团主席职位,以及 Adaildo GOMES D’ASSUNCAO 教授和 Ala SHARAIHA 教授,他们慷慨地同意报告这篇论文并引起关注。我要特别感谢我的妻子 Noushin,感谢她帮助我制作平衡器、天线和测量,以及分享想法。她鼓励我完成这项研究,如果没有她的支持和祈祷,我根本无法完成我的论文。我感谢我的父母,他们每天都为我祈祷,耐心等待这篇伊朗的博士论文。感谢我的兄弟姐妹 Farshid、Mahshid 和 Maysam 以及他们的家人。我要感谢我的公公婆婆的支持和关爱。我还要感谢我的姐姐和姐夫 Minoush 和 Sasha。
为规避碳酸盐形成问题,人们提出了各种电池配置。[5] 最有前途的配置之一是双极膜电解槽 (BPM),它由阳离子交换层 (CEL) 和阴离子交换层 (AEL) 组成。BPM 可以减轻碳酸盐的形成以及 CO 2 和产物的交叉,[6] 此外,它还允许在阴极和阳极的不同 pH 值下进行稳态操作。[7] 在正向偏置 BPM 配置中,AEL 朝向阴极,碳酸根和氢氧根离子通过 AEL 传输。[8] 虽然 AEL 朝向阴极可以提供局部碱性环境(从而使碳产品具有较高的法拉第效率),但在 CEL/AEL 界面处产生的水和/或 CO 2 可能会导致 BPM 起泡和分层。[9]
由于其电导率的微调,这些聚合物已成为设计微电子局部电活性模式的一种替代方案。 [12,13] 在这种情况下,通常使用不同的制造技术,例如注射打印、光热图案化、3D 打印和压印,以及电子束或紫外光刻,[14–21] 例如,在聚吡咯和聚(3,4-乙烯二氧噻吩)/聚苯乙烯磺酸盐基底上产生明确的导电图案。 [16,20] 然而,人们非常需要用于导电基底局部图案化的低成本和直接的方法。 在这种情况下,双极电化学 (BE) 被认为是一种有趣的替代方法,用于局部改性导电物体。 [22–27] 该概念基于由于外部电场 (ε) 的存在而导致的导电基底的不对称极化。在这种条件下,在暴露于电解质溶液中的ε 的物体双极电极 (BPE) 的每个末端都会产生极化电位差 (ΔV)。在存在电活性物质的情况下,仅当ΔV 超过热力学阈值电位 (ΔVmin) 时,BPE 的两端才会发生氧化还原反应。这一概念已用于不对称生成图案化梯度,范围从材料的化学组成到润湿性。[28–33] 近年来,该方法还被用于通过双极电解胶束破坏或电接枝来产生有机薄膜梯度。[34–36] 一种有前途的替代方法是利用导电聚合物有效的绝缘体/导体转变来产生不对称的充电/放电梯度。[37] 例如,Inagi 等人。已经利用这一概念,使用 U 型双极电化学电池在不同的 π 共轭聚合物(如聚苯胺、聚-3,4-二氧噻吩、聚-3-甲基噻吩和共聚(9-芴醇)-(9,9-二辛基芴))中诱导导电模式。[38–41] 此外,已经证明,通过使用复杂的双极电化学装置,可以产生陡峭的局部掺杂梯度。[42] 在此,我们利用双极电化学方法,在掺杂有十二烷基苯磺酸根阴离子(DBS)的柔性独立聚吡咯条(Ppy)上产生局部电阻梯度。之前已有报道通过双极电化学对导电聚合物进行不对称改性,但主要集中在光学跃迁(颜色变化)上。由于对于导电聚合物,电导率
1 FIDMAG医院姐妹2个上瘾的行为, 3西班牙巴塞罗那Cibersam; 4贝尼托·梅尼·卡斯姆(Benito Menni Casm),西班牙巴塞罗那; 5个私人基金会医院,西班牙女性的女性庇护所; 6西班牙巴塞罗那大学;西班牙巴塞罗那圣拉斐尔的7医院; 8医院圣心,西班牙马托雷尔; 9巴塞罗那大学,生物医学研究所,August Pi和Sunyer 10图像的诊断单位,研究基础,西班牙巴塞罗那的圣约翰医院;小组,生物医学研究所August Pi和Sunyer 12史诗)瑞典,瑞典