摘要:量子计算具有胜过经典计算机的潜力,并有望在各种领域中发挥积极作用。在量子机学习中,发现量子计算机可用于增强特征表示和高维状态或功能近似。量子 - 古典杂交算法近年来在嘈杂的中间尺度量子计算机(NISQ)环境下为此目的提出了量子 - 级别的混合算法。 在此方案下,经典计算机所起的作用是量子电路的参数调整,参数优化和参数更新。 在本文中,我们提出了一种基于梯度下降的反向传播算法,该算法可以充分地计算参数优化中的梯度并更新量子电路学习的参数,该参数以当前参数搜索算法的范围优于计算速度,同时呈现相同的测试精度,甚至更高。 同时,所提出的理论方案成功地在IBM Q的20量量子计算机上实施。 实验结果表明,栅极误差,尤其是CNOT门误差,强烈影响派生的梯度精度。 随着由于累积的门噪声误差,在IBM Q上执行的回归精度变得较低。量子 - 级别的混合算法。在此方案下,经典计算机所起的作用是量子电路的参数调整,参数优化和参数更新。在本文中,我们提出了一种基于梯度下降的反向传播算法,该算法可以充分地计算参数优化中的梯度并更新量子电路学习的参数,该参数以当前参数搜索算法的范围优于计算速度,同时呈现相同的测试精度,甚至更高。同时,所提出的理论方案成功地在IBM Q的20量量子计算机上实施。实验结果表明,栅极误差,尤其是CNOT门误差,强烈影响派生的梯度精度。随着由于累积的门噪声误差,在IBM Q上执行的回归精度变得较低。
最近的许多研究都集中在生物学上可行的监督学习算法变体上。然而,运动皮层中没有老师来指导运动神经元,大脑中的学习取决于奖励和惩罚。我们展示了一种生物学上可行的强化学习方案,适用于具有任意层数的深度网络。网络通过选择输出层中的单元来选择动作,并使用反馈连接将信用分配给负责此动作的连续较低层中的单元。做出选择后,网络会得到强化,没有老师来纠正错误。我们展示了新的学习方案——注意力门控大脑传播 (BrainProp)——在数学上等同于错误反向传播,每次针对一个输出单元。我们展示了深度全连接、卷积和局部连接网络在经典和硬图像分类基准(MNIST、CIFAR10、CIFAR100 和 Tiny ImageNet)上的成功学习。 BrainProp 的准确度与标准误差反向传播相当,甚至优于最先进的生物启发式学习方案。此外,学习的反复试验性质与有限的额外训练时间有关,因此 BrainProp 的速度要慢 1-3.5 倍。因此,我们的研究结果为如何在大脑中实施深度学习提供了新的见解。
大脑通过修改神经元 1 – 5 之间的突触连接来学习。虽然突触生理学有助于解释单个修改背后的规则和过程,但它并不能解释单个修改如何协调以实现网络目标。由于学习不能只是盲目积累短视的、突触特定的事件,而不考虑下游行为后果,因此如果我们要理解大脑中的学习,我们需要揭示协调整个网络可塑性的原理。在机器学习中,研究人员研究协调突触更新的方法,以提高人工神经网络的性能,而不受生物现实的限制。他们首先定义神经网络的架构,其中包括神经元的数量及其连接方式。例如,研究人员经常使用具有多层神经元的深度网络,因为这些架构已被证明对许多任务非常有效。接下来,研究人员定义一个误差函数 6,量化网络当前实现其目标的程度,然后他们寻找学习算法
大脑通过修改神经元1 - 5之间的突触连接来学习。尽管突触生理学有助于解释单个修改背后的规则和过程,但它并不能解释单个修改如何协调以实现网络目标。由于学习不仅仅是不考虑下游行为后果的近视,突触特异性事件的盲目积累,因此,如果我们要了解大脑中的学习,我们需要揭示整个网络中的可塑性的原理。在机器学习中,研究人员研究了协调突触更新的方式,以提高人工神经网络的性能,而不会受到生物现实的限制。它们首先定义神经网络的架构,该神经网络包括神经元的数量及其连接。例如,研究人员经常使用具有许多神经元层的深网,因为这些架构已被证明对许多任务非常有效。接下来,研究人员定义了一个错误函数6,该功能量化了网络目前实现其目标的差,然后他们搜索学习算法
摘要:非线性块体晶体中的反向传播参量转换过程已被证明具有独特的特性,可实现高效的窄带频率转换。在量子光学中,在波导中通过反向传播参量下转换过程 (PDC) 生成光子对,其中信号光子和闲置光子以相反的方向传播,提供了独特的与材料无关的工程能力。然而,实现反向传播 PDC 需要具有极短极化周期的准相位匹配 (QPM)。在这里,我们报告了在自制的周期性极化铌酸锂波导中生成反向传播单光子对,其极化周期与生成的波长在同一数量级。双光子状态的单光子以可分离的联合时间光谱行为桥接 GHz 和 THz 带宽。此外,它们允许使用最先进的光子计数器直接观察预示单光子的时间包络。
在上一章中,我们以正式的数学意义进行了计算。现在,我们想根据神经网络中的操作重新解释变量 y 和 x。对于给定节点,该节点的输出(或激活)对应于我们在之前的推导中使用的 y。y 的值是我们将加权的总输入传递到传递函数后得到的值。我们之前已经为该节点输入构造了一个变量。让我们以查看特定输出节点的情况为例;我们称之为第零个输出节点。(这意味着,按照 Python 风格计算,我们正在处理第一个输出节点。)我们将使用相同的方法来处理隐藏层和输出层上的节点,因为这两个层中的每个节点都根据应用于该特定节点的加权总输入的传递函数产生输出。唯一的区别是:
