摘要 - Eikonal方程已成为一种不可或缺的工具,用于对心脏电动激活进行巧妙和有效地建模。原则上,通过匹配临床记录和基于艾科尼尔的心电图(ECG),可以以纯粹的非侵入性方式构建心脏电子生理学的患者特异性模型。否则,拟合过程仍然是一项具有挑战性的任务。本研究介绍了一种新的方法,即测量BP,以解决逆向艾科尼尔问题。Geodesic-BP非常适合GPU加速机器学习框架,从而使我们能够优化Eikonal方程的参数以复制给定的ECG。我们表明,即使在存在建模不准确的情况下,Geodesic-BP也可以在合成测试案例中以高精度重建模拟的心脏激活。此外,我们将al-gorithm应用于双室兔模型的公开数据集,并具有令人鼓舞的结果。鉴于未来向个性化医学的转变,Geodesic-BP具有帮助心脏模型的未来功能化,同时保持临床时间的限制,同时保持先进心脏模型的生理准确性。
©2024作者。本文根据创意共享4.0国际许可,允许以任何中等或格式的使用,共享,适应,分发和复制,因为您将适当的信用归功于原始作者和这些作者,并提供了与创意共享许可证的链接,并指出了IFCHANGES的链接。本文章中的图像或其他第三方材料包含在文章的Creative Commons许可中,除非在材料的信用额度中另有指示。如果本文的创意共享许可中不包含材料,并且您的预期使用不受法定法规的允许或超过允许的使用权,则您需要直接从版权所有的人获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
Eikonal方程已成为准确有效地对心脏电活激活进行建模的必不可少的工具。原则上,通过匹配临床记录和核心心电图(ECG)的匹配,可以纯粹的非侵入性方式构建患者特异性心脏生理学模型。尽管如此,拟合程序仍然是一项具有挑战性的任务。本研究介绍了一种新的方法,即测量BP,以解决逆向敌军问题。Geodesic-BP非常适合GPU加速机器学习框架 - 使我们能够优化Eikonal方程的参数以重现给定的ECG。我们表明,即使在存在建模不准确的情况下,Geodesic-BP也可以在合成测试案例中以高精度重建模拟的心脏激活。fur-hoverore,我们将算法应用于双心脑兔模型的公开数据集,并具有令人鼓舞的结果。鉴于未来向个性化医学的转变,Geodesic-BP具有帮助未来功能的心脏模型的功能 - 符合临床时间段落的同时保持最先进的心脏模型的生理准确性。
等效电路模型 (ECM)、电化学模型和经验退化模型 (EDM) 是常用的 SOH 估算模型。基于 ECM 的方法不研究电池内部复杂的物理化学反应过程,而是基于电路模型,采用滤波算法进行参数辨识,并更新模型参数进行 SOH 估算。例如,余 [3] 采用递归最小二乘 (RLS) 法辨识 ECM 的参数,然后采用自适应 H∞ 滤波算法估计 SOH。徐 [4] 也采用 RLS 辨识参数,然后估算 SOH。基于模型的方法虽然简单、计算成本低,但自适应性较差,且估算结果更多地依赖于参数辨识和滤波算法的有效性。
摘要 — 目前常用的图像识别卷积神经网络与人脑有一些相似之处。然而,它们之间存在许多差异,而且成熟的反向传播学习算法在生物学上并不合理。Hebbian 学习是一种可以最小化这些差异并可能为图像识别网络提供类似大脑的有利特征的算法。在这里,我们探讨了 Hebbian 学习和反向传播之间的差异,包括准确性和隐藏层数据表示。总体而言,Hebbian 网络的表现比传统的反向传播训练网络差得多。使用不完整的训练数据和失真的测试数据的实验导致性能差异较小但仍然可见。然而,事实证明,Hebbian 网络的卷积滤波器结构比反向传播更简单、更易于解释。我们假设,改进 Hebbian 网络的扩展能力可以使它们成为具有更像大脑行为的图像分类网络的强大替代方案。
摘要 现代深度学习的成功取决于大规模训练神经网络的能力。通过巧妙地重用中间信息,反向传播通过梯度计算促进训练,总成本大致与运行函数成正比,而不是产生与参数数量成正比的额外因素——现在参数数量可能达到数万亿。人们天真地认为量子测量崩溃完全排除了反向传播中量子信息的重用。但阴影断层扫描的最新发展(假设可以访问量子态的多个副本)挑战了这一观点。在这里,我们研究参数化量子模型是否可以像经典神经网络一样高效地训练。我们表明,如果不能访问状态的多个副本,就不可能实现反向传播缩放。有了这种额外的能力,我们引入了一种以阴影断层扫描为基础的算法,该算法与量子资源中的反向传播缩放相匹配,同时降低了阴影断层扫描中未解决问题的经典辅助计算成本。这些结果突出了将量子信息重用于实际目的的细微差别,并阐明了训练大型量子模型的独特困难,这可能会改变量子机器学习的进程。
电动汽车的充电状态(SOC)对于预测剩余电池水平并安全保护电池免受过度电荷和过度充电条件非常重要。在这方面,已经提出了使用反向传播(BP)的神经网络(NN)算法来准确估计电池的SOC。锂聚合物电池在其估计的SOC与电流,电压和温度之间具有非线性关系。在这项研究中,施加了3.7 V/16 AH的锂聚合物电池。在恒定电流和温度条件下以0.5C的排放速率进行了电荷/放电实验。实验数据用于训练返回传播神经网络(BPNN),用于在充电条件下预测SOC和在排放条件下派遣(DOD)绩效的深度(DOD)。由于实验,发现拟议的BPNN模型的误差为排出DOD中平均绝对误差的0.22%,而在10、50、100和150个周期中,充电SOC中的平均绝对误差的0.19%。因此,确认了设计的BP算法的SOC学习模型的高性能。
在大脑中如何形成情节记忆是神经科学界的出色难题。对于情节学习至关重要的大脑区域(例如海马)的特征是经常连通性并产生频繁的OfflINE重播事件。重播事件的功能是主动争论的主题。循环连接性,计算模拟显示,当与合适的学习算法(例如通过时间反向传播)(BPTT)结合使用时,可以实现序列学习。bptt在生物学上并不合理。我们第一次在这里描述了在可逆的复发性神经网络R2N2中,BPTT的生物学上是一个合理的变体,它严重利用了o ine-ine-ine-Replay来支持情节学习。该模型使用向前和向后的o ffl ine重播,分别执行快速的一次性学习和统计学习的两个复发神经网络之间传递信息。不喜欢标准BPTT中的重播,此体系结构不需要人工外部存储器存储。此体系结构和方法的表现优于现有解决方案,并说明了海马重播事件的功能意义。我们使用计算机科学的基准测试来演示R2N2网络属性,并模拟啮齿动物延迟交替的T-Maze任务。
摘要 — 量子机器学习仍然是量子计算领域中一个非常活跃的领域。其中许多方法已经将经典方法应用于量子设置,例如 QuantumFlow 等。我们推动这一趋势,并展示了经典卷积神经网络对量子系统的适应性——即 QuCNN。QuCNN 是一个基于参数化的多量子态的神经网络层,计算每个量子滤波状态和每个量子数据状态之间的相似性。使用 QuCNN,可以通过单辅助量子比特量子例程实现反向传播。通过在一小部分 MNIST 图像上应用具有数据状态和滤波状态的卷积层、比较反向传播的梯度并针对理想目标状态训练滤波状态来验证 QuCNN。索引术语 — 量子计算、量子机器学习、卷积神经网络
用于训练深度神经网络的误差反向传播算法是深度学习成功的基础。然而,它需要连续的后向更新和非局部计算,这使得大规模并行化具有挑战性,而且与大脑的学习方式不同。然而,受神经科学启发的学习算法,如利用局部学习的预测编码,有可能克服这些限制,并在未来超越深度学习技术。虽然预测编码起源于理论神经科学,作为皮层信息处理的模型,但最近的研究已将这一想法发展成一种通用算法,能够仅使用局部计算来训练深度神经网络。在这篇综述中,我们回顾了对这个观点做出贡献的作品,并展示了预测编码和反向传播在泛化质量方面的密切联系,以及强调使用预测编码相对于反向传播训练的神经网络的多重优势的作品。具体来说,我们展示了预测编码网络的更大灵活性,与标准深度神经网络不同,它可以同时充当分类器、生成器和联想记忆,并且可以在任意图形拓扑上定义。最后,我们回顾了预测编码网络在机器学习分类任务上的直接基准,以及它与控制理论和机器人应用的密切联系。