摘要 现代深度学习的成功取决于大规模训练神经网络的能力。通过巧妙地重用中间信息,反向传播通过梯度计算促进训练,总成本大致与运行函数成正比,而不是产生与参数数量成正比的额外因素——现在参数数量可能达到数万亿。人们天真地认为量子测量崩溃完全排除了反向传播中量子信息的重用。但阴影断层扫描的最新发展(假设可以访问量子态的多个副本)挑战了这一观点。在这里,我们研究参数化量子模型是否可以像经典神经网络一样高效地训练。我们表明,如果不能访问状态的多个副本,就不可能实现反向传播缩放。有了这种额外的能力,我们引入了一种以阴影断层扫描为基础的算法,该算法与量子资源中的反向传播缩放相匹配,同时降低了阴影断层扫描中未解决问题的经典辅助计算成本。这些结果突出了将量子信息重用于实际目的的细微差别,并阐明了训练大型量子模型的独特困难,这可能会改变量子机器学习的进程。
主要关键词