1 加拿大多伦多 Sunnybrook 研究所物理科学平台,安大略省 M4N 3M5 2 加拿大多伦多 Sunnybrook 健康科学中心神经外科分部,安大略省 M4N 3M5 3 加拿大多伦多 Sunnybrook 研究所 Harquail 神经调节中心 Hurvitz 脑科学研究项目,安大略省 M4N 3M5 4 加拿大多伦多大学医学系,安大略省 M5S 1A8 5 加拿大多伦多大学健康网络 Krembil 研究所,安大略省 M5T 0S8 6 加拿大多伦多西部医院神经外科分部,安大略省 M5T 2S8 7 加拿大多伦多西部医院神经内科分部,安大略省 M5T 2S8 8 加拿大多伦多大学医学生物物理学系,安大略省 M4N 3M5 9 加拿大多伦多大学生物医学工程研究所,安大略省 M5S 3G9 yuexi.huang@sunnybrook.ca
摘要:阵风减缓对于改善飞机飞行品质、降低阵风载荷具有重要意义,利用飞机响应(反馈控制)和阵风扰动信息(前馈控制)来改善阵风减缓效果值得重视。本文设计并分析了一种由前馈控制系统(FFCS)和反馈控制系统(FBCS)组成的组合控制系统(CCS),同时通过数值模拟和风洞试验分别对CCS、单一FFCS和单一FBCS的阵风减缓效果进行了分析比较。以柔性机翼为研究对象,通过数值模拟分析了3种控制系统在不同形式阵风激励(1-cos离散阵风、正弦阵风和Dryden湍流)下的阵风减缓效果。风洞试验中采用阵风发生器产生的正弦阵风,在不同风速和阵风频率下进行了阵风减缓试验。仿真与试验结果表明,CCS对各种阵风激励均有较好的阵风减缓性能。FFCS与FBCS相比,FFCS的鲁棒性和控制效果均优于FBCS。FFCS与CCS相比,FFCS的减缓效果越好,CCS越难取得明显的效果提升,而这种效果的提升是通过在FFCS上增加FBCS来实现的。
摘要:阵风减缓对于改善飞机飞行品质、降低阵风载荷具有重要意义,利用飞机响应(反馈控制)和阵风扰动信息(前馈控制)来改善阵风减缓效果值得重视。本文设计并分析了一种由前馈控制系统(FFCS)和反馈控制系统(FBCS)组成的组合控制系统(CCS),同时通过数值模拟和风洞试验分别对CCS、单一FFCS和单一FBCS的阵风减缓效果进行分析比较。以柔性机翼为研究对象,通过数值模拟分析了3种控制系统在不同形式阵风激励(1-cos离散阵风、正弦阵风和Dryden湍流)下的阵风减缓效果。风洞试验中采用阵风发生器产生的正弦阵风,在不同风速和阵风频率下进行了阵风减缓试验。仿真与试验结果表明,CCS对各种阵风激励均具有较好的阵风减缓性能。FFCS与FBCS相比,FFCS的鲁棒性和控制效果均优于FBCS。FFCS与CCS相比,FFCS的减缓效果越好,采用CCS在FFCS上增加FBCS所获得的效果越难得到明显的改善。
摘要:阵风减缓对于改善飞机飞行品质、降低阵风载荷具有重要意义,利用飞机响应(反馈控制)和阵风扰动信息(前馈控制)来改善阵风减缓效果值得重视。本文设计并分析了一种由前馈控制系统(FFCS)和反馈控制系统(FBCS)组成的组合控制系统(CCS),同时通过数值模拟和风洞试验分别对CCS、单一FFCS和单一FBCS的阵风减缓效果进行分析比较。以柔性机翼为研究对象,通过数值模拟分析了3种控制系统在不同形式阵风激励(1-cos离散阵风、正弦阵风和Dryden湍流)下的阵风减缓效果。风洞试验中采用阵风发生器产生的正弦阵风,在不同风速和阵风频率下进行了阵风减缓试验。仿真与试验结果表明,CCS对各种阵风激励均具有较好的阵风减缓性能。FFCS与FBCS相比,FFCS的鲁棒性和控制效果均优于FBCS。FFCS与CCS相比,FFCS的减缓效果越好,采用CCS在FFCS上增加FBCS所获得的效果越难得到明显的改善。
摘要:阵风减缓对于改善飞机飞行品质、降低阵风载荷具有重要意义,利用飞机响应(反馈控制)和阵风扰动信息(前馈控制)来改善阵风减缓效果值得重视。本文设计并分析了一种由前馈控制系统(FFCS)和反馈控制系统(FBCS)组成的组合控制系统(CCS),同时通过数值模拟和风洞试验分别对CCS、单一FFCS和单一FBCS的阵风减缓效果进行分析比较。以柔性机翼为研究对象,通过数值模拟分析了3种控制系统在不同形式阵风激励(1-cos离散阵风、正弦阵风和Dryden湍流)下的阵风减缓效果。风洞试验中采用阵风发生器产生的正弦阵风,在不同风速和阵风频率下进行了阵风减缓试验。仿真与试验结果表明,CCS对各种阵风激励均具有较好的阵风减缓性能。FFCS与FBCS相比,FFCS的鲁棒性和控制效果均优于FBCS。FFCS与CCS相比,FFCS的减缓效果越好,采用CCS在FFCS上增加FBCS所获得的效果越难得到明显的改善。
摘要:阵风减缓对于改善飞机飞行品质、降低阵风载荷具有重要意义,利用飞机响应(反馈控制)和阵风扰动信息(前馈控制)来改善阵风减缓效果值得重视。本文设计并分析了一种由前馈控制系统(FFCS)和反馈控制系统(FBCS)组成的组合控制系统(CCS),同时通过数值模拟和风洞试验分别对CCS、单一FFCS和单一FBCS的阵风减缓效果进行分析比较。以柔性机翼为研究对象,通过数值模拟分析了3种控制系统在不同形式阵风激励(1-cos离散阵风、正弦阵风和Dryden湍流)下的阵风减缓效果。风洞试验中采用阵风发生器产生的正弦阵风,在不同风速和阵风频率下进行了阵风减缓试验。仿真与试验结果表明,CCS对各种阵风激励均具有较好的阵风减缓性能。FFCS与FBCS相比,FFCS的鲁棒性和控制效果均优于FBCS。FFCS与CCS相比,FFCS的减缓效果越好,采用CCS在FFCS上增加FBCS所获得的效果越难得到明显的改善。
如何节省无人机的能耗进而实现长距离运输是一项非常现实且艰巨的任务。然而对于无人机来说,经典的物体检测算法,例如基于深度卷积神经网络的物体检测算法和经典的飞行控制算法,例如基于PID的位置控制算法,都需要大量的能耗,限制了无人机系统的应用场景。针对这一问题,本文针对四旋翼缆绳悬挂有效载荷(QCSP)系统提出了一种轻量级的物体检测网络和线性自抗扰控制器(LADRC)来提高能耗效率。该系统采用YOLOV3网络并将其嵌入到Jesson NX移动平台中,可以精确检测目标位置。此外,采用缆绳悬挂结构的非线性速度控制器来控制有效载荷的速度,采用LADRC算法实现对有效载荷位置的快速准确控制。仿真与实飞实验表明,提出的目标检测算法和LADRC控制策略可以有效节省无人机的能源。
本文提出了一种用于获得结肠癌诱导血管生成个性化最佳治疗策略的新框架。结肠癌的动力学由 It´o 随机过程给出,这有助于对系统中存在的随机性进行建模。然后,随机动力学由 Fokker-Planck (FP) 偏微分方程 (PDE) 表示,该方程控制相关概率密度函数的演变。使用三步程序获得最佳疗法。首先,制定一个有限维 FP 约束优化问题,该问题输入单个嘈杂的患者数据,并求解以获得与单个肿瘤特征相对应的未知参数。接下来,使用最佳参数集的灵敏度分析来确定要控制的参数,从而有助于评估治疗类型。最后,解决反馈 FP 控制问题以确定最佳组合疗法。由贝伐单抗和卡培他滨组成的组合药物的数值结果证明了所提框架的有效性。
摘要:选择性激光熔化(SLM)是一种金属粉末融合添加剂制造工艺,具有为航空航天和生物医学植入物制造复杂组件的潜力。大规模适应受到阻碍。非均匀熔体池尺寸是这些缺陷的主要原因。由于先前的粉末床轨道加热而导致的熔体池尺寸变化。在这项工作中,对相邻轨道产生的热量的效果进行了建模,并设计了反馈控制。控制的目的是调节熔体池横截面区域,以拒绝粉末床内相邻轨道的热量的影响。SLM过程的热模型是使用集总池体积的能量平衡开发的。将来自相邻轨道的干扰热建模为熔体池的初始温度。将热模型与干扰模型结合起来,导致了一个非线性模型,描述了熔体池的演化。PID是一种经典的反馈控制方法,用于最大程度地减少轨道干扰对熔体池面积的影响。在已知的环境中为所需的熔体池区域调整了控制器。仿真结果表明,在扫描16毫秒内的粉末层多个轨道的扫描过程中,所提出的控制器调节所需的熔体池面积,并在0.04 mm的长度内将激光功率降低了10%,大约在五个轨道中。这减少了孔形成的机会。因此,它提高了使用SLM工艺制造的组件的质量,从而减少了缺陷。
摘要:对于因神经损伤而导致运动障碍的个体,功能性电刺激 (FES) 和康复机器人等康复疗法在改善其活动能力和日常生活活动方面具有巨大潜力。将 FES 与康复机器人相结合可实现紧密协调的人机交互。此类交互的一个例子是 FES 骑行,其中机动辅助可以提供高强度和重复的协调肢体运动练习,从而带来生理和功能上的好处。本文介绍了多个 FES 骑行试验台和安全装置的开发,以及自行车骑手系统的切换非线性动力学。介绍了用于节奏和扭矩跟踪的闭环 FES 骑行控制设计。对于每个跟踪目标,作者介绍并讨论了过去用于计算肌肉刺激和电机电流输入的稳健和自适应控制器的工作。针对每个控制器和跟踪目标组合,提供了涉及健全个体和神经损伤参与者的实验结果。根据实施要求、预期康复结果和骑手表现,讨论了控制算法的权衡。最后,概述了未来的工作以及所开发方法对包括遥控机器人在内的其他技术的适用性。