摘要 - 随着机器学习模型持续集成到关键基础架构中,这些系统针对对抗性攻击的弹性对于所有领域都很重要。本文针对使用Ci-CflowMeter Parser的网络数据集引入了针对网络数据集的对抗性攻击生成器框架。我们对包括FGSMA,JSMA,PGD,C&W等各种突出的对抗攻击进行了全面评估,以评估其在OCCP数据集中的效果。对对抗发电机进行了精心评估,证明了模型性能的重大影响以检测潜在的扰动。结果展示了不同类型的对抗攻击的影响,这有助于未来的防御策略的批判性进步,以保护工业控制系统。索引术语 - 对话攻击,白色框,黑框,eva-sion
量子计算正在迅速发展,需要复杂的控制机制来精确操纵量子比特 - 量子位。量子位是量子计算中量子信息的基本单位,精确控制其状态对于实现量子门和执行量子算法至关重要。任意波形发生器 (AWG) 用于产生用户定义的、精确的和定制的 RF 波形来操纵量子位的状态。量子算法是使用量子门序列实现的。AWG 支持创建可定制的脉冲序列,从而实现量子位校准、量子实验和量子电路的实现。为了让用户能够使用量子计算机并实现量子应用程序的开发,需要一个量子软件堆栈。本文介绍了 Qiskit 量子堆栈与 AWG 的集成。
热回收蒸汽发生器 (HRSG) 的环境要求非常严格。即使在极高的温度和高速气体湍流条件下,绝缘材料也必须能够保持其强度和抗腐蚀性。烟囱或锅炉中绝缘材料损坏引起的热点可能会导致强制停机、数天的停机时间和电力供应中断。Thermal Ceramics 在隔热系统的设计和交付方面拥有超过 25 年的经验。我们的产品帮助世界各地的发电厂通过减少能源损失来显著提高效率。我们的材料具有抗化学和物理磨损、腐蚀和极端高温的特性,因此非常适合用于这些严苛的应用。我们的解决方案提供:• 刚性、柔性或面板系统的工程解决方案。• 低导热性、卓越的热效率、高抗压强度、低重量和低
涡轮额定功率的增加超过≥14MW,需要替代稀土永久磁铁(PM)发电机是风能领域的当前趋势。1个高温超导(HTS)在电兴奋的同步发电机中是一种有前途的替代方案,在过去十年中,它一直是几个研究项目的主题。2对于多种优势,HTS激发大多是在无齿轮,直驱动(DD)同步发电机(额定速度NN≈10RPM)的背景下进行讨论的,例如减少的发电机质量M Gen和增加机械电源转换的发电机效率η。在EcoSwing项目3中已证明了无齿轮3.6 MW发电机的技术可行性。避免使用齿轮以更高的可靠性和较低的维护工作能力产生非常大的DD发电机,以实现大发电机扭矩。较大的发电机尺寸随迄今为止昂贵的HTS材料带来了大量。
Elite RF 由前摩托罗拉工程领导于 2014 年创立,在设计和制造固态射频功率放大器和高功率微波发生器方面树立了极高的标准,可提供现成的现货和定制设计解决方案。凭借内部工程团队和质量控制的 22,000 平方英尺制造设施,我们的核心优势在于我们对协作工程、稳健设计、高制造质量和准时交付的承诺。我们致力于提高您的运营绩效,旨在为您在快速发展的射频领域提供显著的竞争优势。
我为我的员工与我们的目标以及他们每天对他们所做的工作带来的奉献精神的紧密联系感到自豪。该计划要求我们直接或通过其代表以及相关的第三方收集信息,大多数警察当局和卫生从业人员都可以正确确定资格并评估赔偿权的权利。我们的目标是在申请过程,信息收集阶段还是在我们的决策中进行敏感和富有同情心的方式。我们为员工提供了该计划的详细技术培训,并提供了广泛的指导和专家支持。我们保持对创伤信息教育的承诺,主要是在苏格兰政府赞助下开发的苏格兰NHS教育“创伤为司法知识和技能框架的知识和技能框架”。我们为正规学习提供了机会,并有机会听取致力于支持受害者和暴力幸存者的组织,例如强奸危机和撒玛利亚人。
• 放大器从低频到 40GHz • 功率从 1W 到 100kW • A 类和 AB 类放大器 • CW/脉冲 • 内置不同形式 - 模块、机架或定制外壳 • 内置保护、启用/禁用输入、高反向隔离和更多功能 • 选项
本报告的作者建议使用固体Xe颗粒的梯队作为目标。这个想法解决了来自激光等离子体几毫米的喷嘴的问题。由于高原-rayleigh的表面不稳定性的发展,Pellet-Target发电机中的液体氙气射流分解成液滴。从液体表面蒸发导致液滴冷却,并过渡到固态。以这种方式,形成了一个接一个地移动的固体颗粒流。对于液态氢[4]和Xe [5],已成功证明了与光刻中所需的参数形成具有接近光刻所需的参数的梯队的可能性。该报告介绍了建模和实验活动的结果。
1。Guatteri,M.,Mai,P.M。,&Beroza,G。C.(2004)。 用于强型地面运动预测的动态破裂模型的伪纳米近似。 美国地震学会的公告,94(6),2051- 2063年。 2。 Graves,R。W.和Pitarka,A。 (2010)。 使用混合方法宽带地面运动模拟。 美国地震学会的公告,100(5a),2095– 2123。 3。 Graves,R。和Pitarka,A。 (2016)。 在粗大断层上进行的运动地面运动模拟,包括3D随机速度扰动的影响。 美国地震学会的公告。 4。 Song,S.-G.,Dalguer,L。A.,&Mai,P.M。(2013)。 具有1分和2分统计的地震源参数的伪动态源建模。 Geophysical Journal International,196(3),1770– 1786年。 5。 Mai,P.M.,Galis,M.,Thingbaijam,K.K.S.,Vyas,J.C。,&Dunham,E。M.(2018)。 伪动力地面动作模拟中的故障粗糙度。 纯净和应用的地球物理Pageoph,174(9),3419–3450。 6。 Zongyi Li,Nikola Kovachki,Kamyar Azizzadenesheli,Burigede Liu,Kaushik Bhattacharya,Andrew Stuart和Anima Anandkumar。 参数偏微分方程的傅立叶神经操作员,2020。 7。 Andrews,D。J. (2005)。 破裂动力学,能量损失在滑动区域之外。 地球物理研究杂志,110,B01307。 8。 9。 10。Guatteri,M.,Mai,P.M。,&Beroza,G。C.(2004)。用于强型地面运动预测的动态破裂模型的伪纳米近似。美国地震学会的公告,94(6),2051- 2063年。2。Graves,R。W.和Pitarka,A。(2010)。使用混合方法宽带地面运动模拟。美国地震学会的公告,100(5a),2095– 2123。3。Graves,R。和Pitarka,A。(2016)。在粗大断层上进行的运动地面运动模拟,包括3D随机速度扰动的影响。美国地震学会的公告。4。Song,S.-G.,Dalguer,L。A.,&Mai,P.M。(2013)。具有1分和2分统计的地震源参数的伪动态源建模。Geophysical Journal International,196(3),1770– 1786年。5。Mai,P.M.,Galis,M.,Thingbaijam,K.K.S.,Vyas,J.C。,&Dunham,E。M.(2018)。 伪动力地面动作模拟中的故障粗糙度。 纯净和应用的地球物理Pageoph,174(9),3419–3450。 6。 Zongyi Li,Nikola Kovachki,Kamyar Azizzadenesheli,Burigede Liu,Kaushik Bhattacharya,Andrew Stuart和Anima Anandkumar。 参数偏微分方程的傅立叶神经操作员,2020。 7。 Andrews,D。J. (2005)。 破裂动力学,能量损失在滑动区域之外。 地球物理研究杂志,110,B01307。 8。 9。 10。Mai,P.M.,Galis,M.,Thingbaijam,K.K.S.,Vyas,J.C。,&Dunham,E。M.(2018)。伪动力地面动作模拟中的故障粗糙度。纯净和应用的地球物理Pageoph,174(9),3419–3450。6。Zongyi Li,Nikola Kovachki,Kamyar Azizzadenesheli,Burigede Liu,Kaushik Bhattacharya,Andrew Stuart和Anima Anandkumar。参数偏微分方程的傅立叶神经操作员,2020。7。Andrews,D。J. (2005)。 破裂动力学,能量损失在滑动区域之外。 地球物理研究杂志,110,B01307。 8。 9。 10。Andrews,D。J.(2005)。破裂动力学,能量损失在滑动区域之外。地球物理研究杂志,110,B01307。8。9。10。Tinti,E.,Fukuyama,E.,Piatanesi,A。,&Cocco,M。(2005)。 运动源时间函数与地震动力学兼容。 美国地震学会的公告,95,1211–1223。 Mai,P。M.和Beroza,G。C.(2002)。 一个空间随机场模型,以表征地震滑移中的复杂性。 地球物理研究杂志,107(B11),2308。 Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。 美国地震学会公告200; 95(3):965–980。Tinti,E.,Fukuyama,E.,Piatanesi,A。,&Cocco,M。(2005)。运动源时间函数与地震动力学兼容。美国地震学会的公告,95,1211–1223。Mai,P。M.和Beroza,G。C.(2002)。 一个空间随机场模型,以表征地震滑移中的复杂性。 地球物理研究杂志,107(B11),2308。 Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。 美国地震学会公告200; 95(3):965–980。Mai,P。M.和Beroza,G。C.(2002)。一个空间随机场模型,以表征地震滑移中的复杂性。地球物理研究杂志,107(B11),2308。Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。 美国地震学会公告200; 95(3):965–980。Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。美国地震学会公告200; 95(3):965–980。
摘要 - 由于固有的硬件限制,资源约束设备上的真实数量随机数生成具有挑战性。这些局限性会影响找到具有高吞吐量和足够良好的可靠随机性来源的能力。作为脑部计算机界面领域(BCI)领域的最新发展表明,需要随机数的广泛应用,我们研究了基于皮质学的神经数据作为随机数生成的种子的可用性。我们开发了从脑数据中产生随机位的算法,并使用NIST SP 800-22测试套件来评估随机性的质量。我们将算法作为硬件随机位发电机(RBG)实现。然后,我们将这些实现作为硬件加速器集成在MindCrypt,MindCrypt是一种异质的芯片系统(SOC),配备了主机处理器来运行BCI应用程序。在MindCrypt中,应用程序使用我们的RBG加速器作为随机数生成器(RNG)和素数生成器。与使用基于最先进的Linux的RNG相比,在RISC-V处理器上运行软件应用程序的FPGA原型在RISC-V处理器上运行软件应用程序的提高了376倍和4885X的能源效率。通过将RBG加速器和加密加速器之间的点对点(P2P)通信传递随机位,我们在性能中获得6.1倍,与直接存储器访问(DMA)相比,能量效率为12.4倍。最后,我们探索了MindCrypt的部分重新配置的FPGA实现的功效,该实现动态优化了在资源约束的BCI SOC中随机数生成的吞吐量。索引条款 - SOC,HLS,BCI,RISC-V,P2P,FPGA,DPR
