我们提出了一种计算效率高的方法来推导量子态最敏感的幺正演化。这使我们能够确定纠缠态在量子传感中的最佳用途,即使在复杂系统中,当正则压缩示例的直觉失效时也是如此。在本文中,我们表明,使用给定量子态可获得的最大灵敏度由量子 Fisher 信息矩阵 (QFIM) 的最大特征值决定,而相应的演化由重合的特征向量唯一确定。由于我们优化了参数编码过程,而不是专注于状态准备协议,因此我们的方案适用于任何量子传感器。该过程通过 QFIM 的特征向量确定具有最佳灵敏度的最大交换可观测量集,从而自然地优化了多参数估计。
信号发生器是一种用途广泛的重要电子测试仪器,可用于蜂窝通信、雷达系统、微带天线和电子实验室等各个领域。本研究重点是模拟和设计工作频率范围为 35 MHz 至 3 GHz 的低相位噪声信号发生器。为此,使用 Arduino 板上的 Atmega 328P 微控制器来控制基于锁相环 (PLL) 概念的合成器。评估了信号发生器的性能,特别强调预测和分析 PLL 组件产生的相位噪声。为确保系统稳健,设计了三阶环路滤波器以有效抑制杂散。通过使用 ADIsimPLL 仿真工具进行仿真,获得了环路带宽 (10 kHz) 和相位裕度 (45°) 的最佳值。为此实现所选的锁相环芯片是 ADI 公司生产的 ADF4351。通过进行瞬态分析,确定了 PLL 系统从最小输出频率过渡到最大输出频率所需的时间。此外,使用阴极射线示波器研究了 35-100 MHz 频率范围内的发生器信号特性,并使用频谱分析仪研究了 101-3000 MHz 频率范围内的发生器信号特性。计算了不同频率(35 MHz、387 MHz、1 GHz、2 GHz 和 2.9 GHz)下的相位噪声水平,并在不同的偏移量(1 kHz、10 kHz、100 kHz 和 1 MHz)下进行了分析。相比之下,实验结果表明相位噪声水平高于通过模拟获得的结果。值得注意的是,随着输出频率的增加,相位噪声也相应增加。
本报告是由美国政府某个机构资助的工作报告。美国政府及其任何机构、巴特尔纪念研究所或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,或保证其使用不会侵犯私有权利。本文中对任何特定商业产品、流程或服务的商品名、商标、制造商或其他方面的引用并不一定构成或暗示美国政府或其任何机构或巴特尔纪念研究所对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
动力学“冻结”亚稳态纳米结构的合成仍然难以实现。这一限制严重限制了材料发现的当前范式。我们通过对异常氧化和亚稳态非晶态氧化铝 (a-AlO x ; 2.5
在使用基于电子或光子量子事件的物理噪声发生器进行实验时,人们反复观察到与随机分布的显著偏差。为了解释这些影响,有人提出了意识和思维之间基于意图的相互作用以及物理随机过程,这种相互作用要么是由个体思维引起的,要么由假定的全球思维引起。由于这些解释涉及“思维”和“意识”等物理上未定义的对象,因此本文给出了一个基于信息场概念的解释模型,该模型基于广义量子纠缠的概念,包括物理噪声过程与信息场的纠缠以及与量子隐形传态的类比。此外,在一项有 100 名参与者的随机对照研究中检验了使用这种物理噪声发生器捕捉个体定性特征的非随机假设。
便于 TID 测试。主要优点是,与放射源(无需担心处理放射性物质)或粒子束(通常是重型装置,维护要求高)相比,使用 X 射线发生器更容易管理辐射安全问题。这是因为光子的能量相对较低,可以通过防护罩轻松阻止,而且 X 射线发生器可以轻松关闭。X 射线发生器的另一个优点是光子能量足够低,可以轻松准直。因此,可以使用 ARACOR 之类的 10 keV 发生器照射晶圆上的单个设备。与 60-Co 或铯 137 源相比,X 射线发生器还提供相对较高的剂量率,从而缩短了测试时间。在系统设计期间,这允许快速(一天内)对同一类型的多个组件进行 TID 灵敏度表征(筛选),以便获得 TID 硬度的初步估计值。最后,与放射源或粒子束相比,X 射线发生器的购买和维护成本更低。低能 X 射线发生器的主要缺点是光子穿透深度低,必须在晶圆级或无盖器件上进行辐射,而更高能量的辐射源对于封装器件或系统级(电子板)的辐射测试仍然是强制性的。其他缺点
摘要。量子随机数发生器(QRNG)可以通过利用量子力学的固有概率性质来提供真正的随机性,量子力学在许多应用中起着重要作用。但是,真正的随机性获取可能会受到所涉及的不受信任设备的攻击,或者它们与现实生活实施中理论建模的偏差。我们提出并在实验上演示了独立于源设备的QRNG,该QRNG使人们能够使用不信任的源设备访问真实的随机位。随机位是通过测量时间的任何一个光子的到达时间 - 通过自发参数下调产生的能量纠缠的光子对的到达时间,在此通过观察非局部分散剂取消来证明纠缠。在实验中,我们通过改进的熵不确定性关系提取4 Mbps的生成速率,可以通过使用高级单光子检测器将其改进到每秒千兆位。我们的方法为QRNG提供了有前途的候选人,而实际上没有表征或容易出错的源设备。
摘要:信息的爆炸式增长迫切要求扩展光通信和信息处理的容量。基于轨道角动量的模分复用 (MDM) 被公认为提高单光纤带宽最有前途的技术。为了使其与主波分复用 (WDM) 兼容,宽带等高效相位编码受到高度追求。本文提出了一种基于扭曲液晶和后镜的超宽带反射平面光学设计。光在扭曲双折射介质内的回溯导致消色差相位调制。利用这种设计,展示了单扭曲反射 q 板将白光束转换为多色光学涡旋。进行了琼斯演算和矢量光束表征以分析宽带相位补偿。双扭曲配置将工作波段进一步扩展到 600 nm 以上。它为WDM/MDM兼容元件提供了超宽带和反射解决方案,并可能显著促进超宽带平面光学技术的进步。
摘要:小型聚光太阳能发电厂目前尚未普及,因为其平准化电力成本 (LCoE) 过高,而容量 >100 MW 的 CSP 发电厂的 LCoE 低于 20 cEUR/kWh。在 CSP 发电厂内集成固态转换器可以提高整个技术的可扩展性和经济竞争力,尤其是在较小规模下,因为固态转换器的转换效率与尺寸的相关性较弱。本文提出了一种带有高温热电子能量转换器 (TEC) 的系统,以及设计为即使提供高浓度比也很便宜的光学聚光器,以提高 CSP 发电厂的成本效益,从而实现经济可持续性和市场竞争力。这是可能的,因为 TEC 可以充当转换顶循环,直接产生电能,通过应用实际条件估计可能的转换效率为 24.8%,并为二次热阶段提供有用的热流。根据光学聚光器和 TEC 开发既定的技术规范,并根据合理的经济假设,估计总工厂转换效率为 35.5%,LCoE 为 6.9 cEUR/kW,并考虑到 1 MW 输入太阳能系统配备 8 小时储能罐的可能性。与其他可用的小容量可再生能源技术相比,计算得出的预测值极具竞争力,并为加速部署技术努力以展示所提出的解决方案开辟了道路。
近年来,各个经济部门使用的高压发电技术根据应用领域和性质的不同,面临着许多要求,特别是使用寿命、环境安全、工作效率和能源效率等要求[1-7]。特别是在当今使用的具有光辐射的生物物理装置中,杀虫装置的能源需要高于~3000 V的电压,这对人类来说是安全的。在这种类型的设备中,需要交流220伏电源来产生高压。这不仅增加了能耗,还给它们的使用带来了不便。例如,考虑到在现场使用生物物理设备,将它们连接到网络需要使用与影响范围相等的连接电缆。这反过来又导致了高能耗和不便。用于放大半导体电信号的晶体管的发明使解决此类问题成为可能。如今,这种晶体管广泛应用于各个领域的电信号放大,具有节能、低成本、操作准确等特点[5-9]。在这项研究中,研究人员开发了一个用于产生安全高压的计算机模型