IL-1β + IFN-γ)持续48 h,(ii)在CT1上暴露于CT1的人类胰岛,以及(III)在糖尿病前(6周龄)与年龄匹配或小鼠的NOD小鼠的胰岛(III)胰岛。为了验证6周龄是否对应于NOD小鼠的初始T1D发育阶段,我们对NOD和NOR小鼠的胰岛进行了蛋白质组学分析(表S4-5),并将结果与Endoc-βH1细胞的蛋白质组学数据进行了比较。我们观察到炎症标记的上调,例如抗原转运蛋白TAP1,转录因子STAT1和干扰素诱导的鸟烯基结合蛋白GBP2(图S1)。没有样品降低胰岛素水平(图S1),证实了Nod小鼠的胰岛炎症,但仍处于糖尿病前期
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
大豆中的抗域因子(ANFS)以原始形式限制其消耗。尽管发芽会在一定程度上减少ANF,但它们仍然超出了人类消费的安全限制,以发芽形式限制大豆消费。大豆anf的失活需要足够的热处理。因此,在本研究中,给予了刺后红外(IR)治疗以减少ANF,尤其是胰蛋白酶抑制剂。研究了IR功率密度(4250 - 4750 W/m 2),暴露时间(4-8分钟)以及发芽阶段(5-11 mm芽的长度)对颜色,结实度和胰蛋白酶抑制剂活性(TIA)的影响。响应表面方法用于优化响应。最佳条件为4497.5 W/m 2 IR功率,4分钟的暴露时间和5.54 mm发芽阶段(平均发芽长度)。在最佳条件下获得的色差,牢固性和TIA值分别为2.43、24.66 N和2.458 mg/g。发芽和IR组合治疗有效地将TIA降低到安全水平(降低了77%的生大豆),同时保留了发芽谷物的质量。研究表明,组合治疗可有效地用于生产即食大豆芽。
摘要 积累在植物组织和结构(如腺毛和薄表皮层)表面的化合物被定义为渗出物、外部化合物和浅表化合物。它们表现出重要的保护活性——抗真菌、抗菌、拒食昆虫、杀幼虫、抗疟原虫和防紫外线。评估了从蜡菊花中获得的渗出物对黑麦草种子发芽和初始胚根伸长的抑制活性。该实验在培养皿中体外进行。在水-丙酮混合物(99.5:0.5)中,以 1、3、5、7 和 10 mg/mL 的浓度测定渗出物。用 GC/MS 分析渗出物的化学成分。发现浓度为 5 mg/mL 的渗出液可导致 90% 以上的种子发芽抑制。在相同浓度下,观察到根部生长被完全抑制。分泌物的主要生物活性成分被鉴定为黄酮苷元-柚皮素。本研究首次研究了H. arenarium对种子发芽的抑制活性。
小麦收获前发芽(PHS)会降低产量和籽粒质量,几乎在世界各地的小麦种植区都会发生(Vetch 等,2019)。一般而言,红粒小麦品种比白粒小麦品种对 PHS 的耐受性更强(Himi 等,2011)。此外,籽粒外皮的红色色素中含有原花青素,其抗氧化活性和自由基清除能力具有促进健康的功效。因此,培育优良红粒小麦品种是培育高产优质小麦的重要目标。R2R3-MYB 是植物中最大的转录因子家族之一,在调节植物发育、代谢和逆境反应中起着至关重要的作用。六倍体小麦的 R2R3-MYB 转录因子 Tamyb10 可激活黄酮类化合物生物合成基因,从而决定小麦粒的红色,并影响 PHS(Himi et al.,2011)。在大多数白小麦品种中,Tamyb10-A1a、Tamyb10-B1a 和 Tamyb10-D1a 基因存在大面积插入或缺失,从而破坏了 IRTKAL/IRC 基序和调控功能(Himi et al.,2011)。在 Tamyb10 基因中,Tamyb10-B1a 等位基因在近 88.6% 的面包小麦品系中发生 19 bp 的缺失;该缺失导致开放阅读框移码,并破坏了所产生的蛋白质(Dong et al.,2015;Himi et al.,2011)。鉴于 CRISPR/Cas9 诱导的突变通常在特定靶位点处为 +1/1 bp 插入/缺失 (Zhang et al., 2014 , 2016 ),我们可以恢复 Tamyb10-B1a 等位基因内的移码突变(由 19 bp
摘要:脱落酸(ABA)是一种重要的植物激素,参与调节植物生长、发育和逆境响应中的多种功能。多种蛋白质参与调控环境胁迫下ABA信号转导机制,其中PYR1/PYL/RCAR家族为ABA受体。本研究利用CRISPR/Cas9基因编辑系统和单个gRNA敲除大豆三个PYL基因:GmPYL17、GmPYL18和GmPYL19。T0代植株基因分型结果显示,gRNA可有效敲除GmPYL17、GmPYL18和GmPYL19基因靶序列,并使其发生不同程度的缺失。一组诱导的等位基因被成功转移到后代。在T2代,我们获得了双重和三重突变的基因型。在种子萌发阶段,CRISPR/Cas9技术制备的GmPYL基因敲除突变体,尤其是gmpyl17/19双突变体对脱落酸的敏感性低于野生型。利用RNA-Seq技术,通过3个生物学重复研究不同处理下萌发幼苗对脱落酸反应相关的差异表达基因。gmpyl17/19-1双突变体种子萌发过程中对脱落酸的敏感性降低,突变株高和分枝数高于野生型。在脱落酸胁迫下,GO富集分析显示一些正向萌发调控因子被激活,降低了脱落酸敏感性,促进了种子萌发。本研究为从分子水平上深入研究脱落酸信号通路及其关键成分的参与提供了理论基础,有助于提高大豆对非生物胁迫的耐受性,同时也有助于育种者调控和提高大豆在不同胁迫条件下的产量和品质。
高种子活力可确保种子质量高、产量高。早期幼苗生长参数可指示水稻种子的活力。通过生理生长参数来判断种子活力是一种由许多数量性状基因座控制的复杂性状。通过纳入包括发芽率在内的六个幼苗期生理参数的所有表型组的基因型,准备了一个代表 274 个水稻地方品种种群的面板,以进行关联作图。在种群中观察到所研究的六个性状的巨大差异。该种群被分为 3 个基因组。固定指数表明种群中存在连锁不平衡。该种群被分为亚种群,每个亚种群都与 6 个生理性状相对应。共报告了 5 个 QTL,即发芽率(GP)的 qGP8.1;qSVII2.1、qSVII6.1 和 qSVII6。在该作图群体中验证了控制种子活力指数 II (SVII) 的 qSVI 11 . 2 和控制根冠比 (RSR) 的 qRSR11 . 1。此外,还鉴定出了 13 个控制生理参数的 QTL,例如控制种子活力指数 I 的 qSVI 11 . 1;控制种子活力指数 II 的 qSVI11 . 1 和 qSVI12 . 1;控制根系生长速率 (RRG) 的 qRRG10 . 1、qRRG8 . 1、qRRG8 . 2、qRRG6 . 1 和 qRRG4 . 1;控制根冠比 (RSR) 的 qRSR2 . 1、qRSR3 . 1 和 qRSR5 . 1,以及控制发芽率的 qGP6 . 2 和 qGP6 . 3。此外,还检测到了 qGP8 . 1 和 qSVI8 . 1 与 GP 和 SVI-1 共定位或共遗传;qGP6 . 2 和 qRRG6 . 1 与 GP 和 RRG 共定位或共遗传;qSVI11 . 1 和 qRSR11 . 1 与 SVI 和 RSR 共定位或共遗传。本研究鉴定的 QTL 将有助于改良水稻种子活力性状。
4 土壤 • 很深的土壤在到达地表之前就会耗尽其储量。光照要求不允许这种情况发生,因为它确保只有位于表面或非常靠近表面的幼苗才开始发芽(Bidwell,1979)。 11 发芽初期的代谢可能是厌氧的,一旦种皮剥落,氧气扩散到种皮中,就会转变为需氧的。在此阶段,能量需求由氧化过程提供,包括气体交换、二氧化碳输出和氧气输入(Wilkins,1969)。