摘要粪便微生物群移植(FMT)的成功提供了微生物组疗法的必要概念概念。然而,基于粪便的疗法具有许多相关的风险和不确定性,因此定义了以靶向方式修改微生物组的微生物伴侣,已成为FMT的有希望的更安全的替代品。这种实时生物治疗产品的开发面临着重要的挑战,包括选择适当的菌株以及根据大规模控制财团的生产。在这里,我们报告了一种基于生态和生物技术的微生物财团结构的方法,该方法克服了这些问题。我们选择了九种菌株,这些菌株构成了一个财团来模仿健康人肠道菌群中碳水化合物发酵的中央代谢途径。连续共培养细菌会产生一个稳定且可再现的联盟,其生长和代谢活性与单独培养的菌株的等效混合不同。此外,我们表明我们的基于功能的财团在急性结肠炎的葡聚糖硫酸钠小鼠模型中应对营养不良,而菌株的菌株混合不匹配FMT。最后,我们通过设计和产生其他稳定组成的财团来表现出鲁棒性和方法的鲁棒性和一般适用性。我们建议将自下而上的功能设计与连续共培养相结合是一种强大的策略,可以生成功能强大的功能设计合成财团,以供治疗使用。
摘要 - 电子商务的兴起和云服务器的采用通过向在线购物者提供更大的倾向和选择,从而彻底改变了零售。但是,个性化客户体验也提出了有关隐私,安全性和信任的重要挑战。为了解决此问题,采用了使用平等测试(PKEET)的公共密钥加密。客户体验以加密方式将客户体验牢固地传输到云服务器。因此,云服务器有权在加密数据和检索上进行平等测试,而无需透露私人详细信息。爱德华·斯诺登(Edward Snowden)的披露强调了能够渗透到用户的能力对手的风险,并通过秘密后门秘密访问私人信息。为了解决这个问题,提出了加密反向防火墙(CRF)。但是,将CRF技术应用于Pkeet,以确保电子商务中的个性化和上下文化。因此,这项工作引入了一种新型的平等测试公共密钥加密,使用加密反向防火墙(ET-PKE-CRF)方法。绩效评估表明,ET-PKE-CRF方案在通信和计算方面大大提高了效率,表现优于当前高级解决方案。
无金属电催化剂用于气体的电化学转化率构成了SUS可容纳能量过渡的重要资产。核苷酸在电子传输链中充当氧化还原介质,以减少细胞呼吸中的氧气。这种有效的自然机制的仿生物可以用于应对与电化学气体转化技术相关的挑战,例如缓慢的动力学和高电势。通常据报道多个描述符基准基准的电催化剂的活性,其中周转频率(TOF)被认为是最准确的标准。在这里,制备了石墨烯纳米果核苷酸杂种材料的库,并通过旋转圆盘电极实验和TOF估计评估了对石墨烯 - 富烯单核苷酸杂化型ORR/OER反应的电催化性能。在评估催化剂的固有活性时,催化剂负荷和分散液的测定尤其重要,因此,通过表征技术的组合对装入石墨烯载体的核苷酸电催化剂量进行了彻底量化。密度功能理论计算支持观察到的实验趋势,这是基于给定核苷酸在石墨烯上的吸附速率和特定杂交材料的催化活性。这项工作构成了一种预测自然模仿电催化剂以进行有效储能的途径。
白血病复发是同种异体造血细胞移植后的主要死亡原因(Allo-HCT)。我们测试了靶向T细胞(TC)免疫球蛋白和含粘蛋白的分子3(TIM-3)的潜力,以改善移植物 - 抗血清(GVL)效应。,当造血干细胞过表达某些致癌驱动器突变时,我们观察到Tim-3配体的差异表达。抗TIM-3 AB治疗改善了具有致癌基因诱导的Tim-3配体表达的白血病的小鼠的存活。相反,配体表达低的白血病细胞为抗TIM-3治疗。在CD8 + TC中的体外,TIM-3阻滞或遗传缺失增强了TC激活,增殖和IFN-γ的产生,同时增强了GVL效应,防止TC耗竭,并改善了VIVO中的TC细胞毒性和糖酵解。相反,髓样细胞中的TIM-3缺失不会影响同种异体TC的增殖和体外激活,这表明抗TIM-3处理介导的GVL效应是TC诱导的。与抗编程的细胞死亡蛋白1(抗PD-1)和抗隔毒性T淋巴细胞相关蛋白4(抗CTLA-4)治疗相反,抗–TIM-3-3-处理并不能增强急性移植物患者(AGVHD)。tim-3及其配体经常在抗抗All-HCT复发的患者的急性髓样白血病(AML)细胞中表达。我们破译了在AML和TIM-3配体表达中发现的致癌突变之间的连接,并确定抗TIM-3处理是通过代谢和转录TC重编程增强GVL效应的策略,而不会加剧AGVHD。我们的发现支持Allo-HCT后AML复发患者抗TIM-3 AB的临床测试。
此预印本版的版权持有人于2025年3月5日发布。 https://doi.org/10.1101/2025.03.02.25323201 doi:medrxiv preprint
随着技术开发的发展,聚合物在开发能量收集和机电设备方面正在备受考虑。聚乙烯氟化物(通常称为氟聚合物家族的半晶体聚合物PVDF)在研究界中引起了极大的兴趣。这种聚合物对具有出色的压电和介电性能的研究人员感到惊讶。除此之外,诸如出色的热稳定性,柔性处理,防腐蚀和机械强度等特性使它们更适合于诸如可穿戴传感器,纳米生成器,旋转阀超滤膜和锂离子电池中的分离器等应用。此外,在通过其电气性能深入探索时,PVDF是铁电绝缘矩阵,主要在绝缘材料中采用。,但很少有研究人员导致将某些填充物纳入PVDF可以改善其电活性晶体,而无需外部脉动过程。这种增强功能增强了他们的压电性能,使其成为多功能应用的高级聚合物,例如电磁干扰(EMI),声传感器,能量存储和智能支架的屏蔽材料。因此,本综述将PVDF作为多功能应用的高级聚合物。
背景:代际转移效应包括从父母到孩子的特征传播。虽然在行为上有充分的文献记载,但对大脑结构或功能的代际转移效应的研究很少,尤其是那些检查行为和神经生物学内表型的关系的研究。这项研究旨在研究与皮质胶质电路相关的行为和神经间传递效应,与社会情感功能和心理健康有关。方法:从72名参与者那里获得T1-神经影像学和行为数据(39名母子二元/ 39名儿童; 7 - 13岁; 16个女孩/ 33位母亲; 26 - 52岁)。灰质体积(GMV)是从conticolimbic区域提取的(皮质下:杏仁核,海马,伏隔核;新皮层:前扣带回,内侧轨道额叶区域)。通过相关系数和与随机的成人孩子对的相关系数和比较来量化母子相似性。结果:我们确定了皮质下皮质上的明显的皮质性母子相似性(r = 0.663)。在心理健康方面的母子相似性是显着的(r = 0.409),通过新皮质中的相似性,但不是皮质下GMV的相似性,可以预测心理健康中的二元相似程度。结论:代际神经影像揭示了Corticolimbic GMV的明显母子转移,最强烈地在皮层下区域。然而,新皮质相似性的变化预测了母亲幸福感的相似性。最终,这种技术可能会增强我们对与健康和疾病相关的行为和神经家族转移影响的了解。
简单的摘要:甲硝唑对狗在狗中的有用性是不引起的。在狗中,孔梭状芽胞杆菌和大肠杆菌作为急性无骨腹泻(AD)在狗中的作用是有争议的,而某些有益的细菌,例如Hiranonis,是正常肠道杀虫剂的重要成员。在这项研究中,比较了急性腹泻的狗的甲硝唑和核心肠道菌群的影响。在临床过程中没有观察到甲硝唑的显着好处。甲硝唑对灌注梭菌的浓度没有影响,但导致大肠杆菌的浓度增加,营养不良指数增加,而Hiranonis浓度降低。总而言之,与共生治疗相反,甲硝唑治疗对微生物组产生负面影响,而不会影响临床结果。
在物联网(IoT)中广泛使用了由Android驱动的设备的用法,使它们容易受到不断发展的网络安全威胁的影响。物联网网络中的大多数医疗保健设备,例如智能手表,智能温度计,生物传感器等。检测Android恶意软件对于保护敏感信息和确保物联网网络的可靠性至关重要。本文重点介绍了启用AI的Android恶意软件检测,以改善IoT网络中的零信任安全性,该网络需要在提供网络资源访问权限之前对Android应用程序进行验证和认证。零信任安全模型都需要对试图访问专用网络上资源的每个实体进行严格的身份验证,而不管它们是在网络周围内还是外部。我们提出的解决方案DP-RFECV-FNN,一种用于Android恶意软件检测的创新方法,该方法在零信任模型下为IoT网络设计的前馈神经网络(FNN)中采用差异隐私(DP)。通过集成DP,我们确保在检测过程中数据的机密性,为网络安全解决方案中的隐私设定新标准。通过将DP和零信任安全性的优势与FNN的强大学习能力相结合,DP-RFECV-FNN展示了与最近的论文相比,在保持严格的隐私控制的同时,可以识别已知和新颖的恶意软件类型和更高的精度。这些结果是在不同的隐私预算下实现的,范围为𝜖 = 0。1至𝜖 = 1。dp-rfecv- fnn的精度从97.78%到99.21%,同时利用静态特征,而Android应用的动态特征则使用静态特征,并使用93.49%至94.36%,以检测它是恶意软件还是良性。0。此外,我们提出的特征选择管道使我们能够通过显着减少所选功能和训练时间的数量,同时提高准确性,从而超越最先进的方法。据我们所知,这是第一项通过具有隐私性神经网络模型基于静态和动态功能对Android恶意软件进行分类的工作。
利益冲突Philipp Karschnia-从Ludwig-Maximilians-University慕尼黑的“研究与教学支持计划”(Föfole)授予了“ LMU医学研究与科学学会”(Wifomed)(Wifomed)的“弗里德里希·贝尔·贝尔(Friedrich-Baur) - 贝尔·贝尔(Friedrich-Baur-Baur-Roundation)和“ Familie mehdontation”。Emilie le Rhun -Elr获得了Abbvie,Adastra,Daiichi Sankyo,Leo Pharma,Seagen和Tocagen的讲座或顾问委员会的酬金。Michael Vogelbaum- Infuseon Therapeutics的间接股权和患者特许权使用权益。来自Celgene和Cellinta的Honararia。从Celgene和Oncosynergy获得的研究赠款。Martin van den bent- Celgene,BMS,Agios,Boehringer,Abbvie,Abbvie,Bayer,Carthera,Nerviano和Genenta的顾问。Stefan J. Grau - 未报告披露。Matthias Preusser – MP has received honoraria for lectures, consultation or advisory board participation from the following for-profit companies: Bayer, Bristol- Myers Squibb, Novartis, Gerson Lehrman Group (GLG), CMC Contrast, GlaxoSmithKline, Mundipharma, Roche, BMJ Journals, MedMedia, Astra Zeneca, AbbVie,礼来(Lilly),梅达德(Medahead),戴伊(Daiichi Sankyo),赛诺菲(Sanofi),默克·夏普(Merck Sharp&Dome),托卡根(Tocagen),阿法斯特拉(Adastra)。以下营利性公司支持MP向其机构支付的临床试验和合同研究:Böhringer-Ingelheim,Bristol-Myers Squibb,Roche,Daiichi Sankyo,Daiichi Sankyo,Merck Sharp&Dome,Novocure,Novocure,GlaxoSmithkline,Abbvie。Riccardo Soffietti-未报告披露。Louisa von Baumgarten - 尚无报告。 Manfred Westphal - 未报告披露。Louisa von Baumgarten - 尚无报告。Manfred Westphal - 未报告披露。Michael Weller-来自Abbvie,Adastra,Merck,Sharp&Dohme(MSD),默克(EMD),Novocure,Piqur和Roche的研究赠款。荣誉仪式或咨询委员会的参与或咨询咨询,来自Abbvie,Adastra,Basilea,Bristol Meyer Squibb(BMS),Celgene,Merck,Sharp&Dohme(MSD),Merck(EMD),Novocure,Orbus,Roche,Roche,Tocagen和Ymabs和Ymabs和Ymabs和Ymabs和Ymabs。Joerg -Christian Tonn- Brainlab和Carthera的顾问/发言人Honoraria,以及Springer Publisher Intl的特许权使用费。