Loading...
机构名称:
¥ 1.0

在物联网(IoT)中广泛使用了由Android驱动的设备的用法,使它们容易受到不断发展的网络安全威胁的影响。物联网网络中的大多数医疗保健设备,例如智能手表,智能温度计,生物传感器等。检测Android恶意软件对于保护敏感信息和确保物联网网络的可靠性至关重要。本文重点介绍了启用AI的Android恶意软件检测,以改善IoT网络中的零信任安全性,该网络需要在提供网络资源访问权限之前对Android应用程序进行验证和认证。零信任安全模型都需要对试图访问专用网络上资源的每个实体进行严格的身份验证,而不管它们是在网络周围内还是外部。我们提出的解决方案DP-RFECV-FNN,一种用于Android恶意软件检测的创新方法,该方法在零信任模型下为IoT网络设计的前馈神经网络(FNN)中采用差异隐私(DP)。通过集成DP,我们确保在检测过程中数据的机密性,为网络安全解决方案中的隐私设定新标准。通过将DP和零信任安全性的优势与FNN的强大学习能力相结合,DP-RFECV-FNN展示了与最近的论文相比,在保持严格的隐私控制的同时,可以识别已知和新颖的恶意软件类型和更高的精度。这些结果是在不同的隐私预算下实现的,范围为𝜖 = 0。1至𝜖 = 1。dp-rfecv- fnn的精度从97.78%到99.21%,同时利用静态特征,而Android应用的动态特征则使用静态特征,并使用93.49%至94.36%,以检测它是恶意软件还是良性。0。此外,我们提出的特征选择管道使我们能够通过显着减少所选功能和训练时间的数量,同时提高准确性,从而超越最先进的方法。据我们所知,这是第一项通过具有隐私性神经网络模型基于静态和动态功能对Android恶意软件进行分类的工作。

请引用已发表的版本Nawshin,Faria,Unal,...

请引用已发表的版本Nawshin,Faria,Unal,...PDF文件第1页

请引用已发表的版本Nawshin,Faria,Unal,...PDF文件第2页

请引用已发表的版本Nawshin,Faria,Unal,...PDF文件第3页

请引用已发表的版本Nawshin,Faria,Unal,...PDF文件第4页

请引用已发表的版本Nawshin,Faria,Unal,...PDF文件第5页

相关文件推荐

2025 年
¥1.0
2024 年
¥1.0