Loading...
机构名称:
¥ 1.0

作者巧妙地开发了一个非平稳生成统计模型,以在气候变化下为空间温度极端变化,从而允许对空间风险度量的蒙特卡洛估计。基于对空间风险功能的阈值超出阈值的基础,该模型将来自不规则间隔的气象站的数据与定期空间网格上的物理气候模型的模拟结合在一起。他们的工作解决了对极端天气的频率,幅度和程度的全面统计评估的普遍需求。此任务是复杂的,因为温度是全球变暖的关键变量,在三维时空和时间上表现出强烈的异质趋势。物理模型的数值模拟提供了大量的“大”数据,但具有强大的局限性:模拟是确定性的,不是概率的,并且是在相对粗糙的空间网格上进行的,即,不是在天气站级别基于点;关于真实气候的模拟很大的偏见是可能的。计算成本很高,并防止模拟大量的全时代编年史和极端事件目录。相反,所提出的方法转移了有关从物理模拟到统计模型的稀疏观察到的空间温度生物性的信息,以获得基于点的随机天气发生器(SWG),而没有受到这种限制。它展示了SWG是增强物理模拟提供的数据的关键工具。,2024)。作者通过为批量模型进行多个分位回归来解决问题。,2023)。可以以低的计算成本来校准各种目的:仿真物理模型,从网格的大规模输入数据到基于点的分布的缩小,以及对罕见事件的大型样本的随机模拟。该纸张利用极值理论(EVT)的灵活最新方法用于基于年度位置的最大值的依赖峰值阈值,而不是传统方法,因此,来自数据的信息得到了更好的保存和解释(Horser等人的解释)(Horser等人。不过,这是有代价的:总空间风险的阈值超出了所有位置的总阈值超出阈值的阈值,因此必须适合将协变量的模型适合边缘分布的整体和尾部。另一种选择位于亚震荡模型中,也称为扩展的广义帕累托分布,它们可以灵活地捕获全部数据范围,同时在两个尾巴中都与渐近模型保持一致性(Papastathopoulos和Tawn,2013; Naveau等,2013; Naveau等人。,2016年; Yadav等。这有助于避免由于在明确的固定阈值下方和更高上方的拆分建模而增加的不确定性和建模开销。所提出的模型使用大规模的物理协变量(例如,温度均值)将大规模信号传播到局部(基于点)温度。规定可以确定协变量对温度响应的因果影响,这些模型将允许模拟未来的极端温度,并从气候变化的场景和物理模拟中获得未来的协变量。时间序列极端的因果推断工具(Bodik等人,2024)可以承诺确认大规模变量的因果影响。

Thomas Opitz引用此版本

Thomas Opitz引用此版本PDF文件第1页

Thomas Opitz引用此版本PDF文件第2页

Thomas Opitz引用此版本PDF文件第3页

Thomas Opitz引用此版本PDF文件第4页